"History is not simply the study of the past, it is an explanation of the present."
—Paul Hunham, portrayed by Paul Giamatti in The Holdovers
Publications can be found at Google Scholar.
(* = equal contribution)

Publication Tags
2024
Junxiong Wang, Tushaar Gangavarapu, Jing Nathan Yan, and Alexander M. Rush (2024): MambaByte: Token-free Selective State Space Model. In Proceedings of the Conference on Language Modeling (COLM 2024).
  abstract       url      .pdf      .bib       models      video   
conference  state space models  mamba  llm  language modeling  byte-level models
2023
Yann Hicke, Abhishek Masand, Wentao Guo, and Tushaar Gangavarapu (2023): Assessing the efficacy of large language models in generating accurate teacher responses. In Proceedings of the 18th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2023).
  abstract       url      .pdf      .bib       code      shared task  
conference  ai for education  llms  finetuning  efficacy  student-teacher interaction  llm prompting
2022
Tushaar Gangavarapu and Sriraghavendra Ramaswamy (2022): Alexa, stop reading the references: Enhancing the reading experience in Kindle eBooks. In Proceedings of the 9th Amazon Machine Learning Conference (AMLC), Amazon.
  abstract       url      .pdf      .bib    
conference  alexa  ebooks  kindle  natural language processing  reading experience  user engagement
Tushaar Gangavarapu* and Sriraghavendra Ramaswamy* (2022): A figure is worth a thousand words, but where are the words?: Enhancing image experience in Kindle eBooks. In Proceedings of the 9th Amazon Machine Learning Conference (AMLC), Amazon.
  abstract       url      .pdf      .bib    
conference  ebooks  image processing  kindle  natural language processing  reading experience  user engagement
2021
Tushaar Gangavarapu, Gokul S Krishnan, Sowmya Kamath S, and Jayakumar Jeganathan (2021): FarSight: Long-Term Disease Prediction Using Unstructured Clinical Nursing Notes. Transactions on Emerging Topics in Computing (TETC), IEEE.
  abstract       url      .pdf (draft)      .bib       .data  
journal  clinical decision support systems  disease prediction  healthcare analytics  ICD-9 code group prediction  precision medicine
Veena Mayya, Sowmya Kamath S, Gokul S Krishnan, and Tushaar Gangavarapu (2021): Multi-channel, convolutional attention based neural model for automated diagnostic coding of unstructured patient discharge summaries. Future Generation Computer Systems (FGCS), Elsevier.
  abstract       url      .pdf (draft)      .highlights      .bib       .data  
journal  disease prediction  explainability  healthcare informatics  interpretability  predictive analytics  unstructured text modeling
2020
Tushaar Gangavarapu and Jaidhar CD (2020): A Novel Bio-inspired Hybrid Metaheuristic for Unsolicited Bulk Email Detection. In Proceedings of the 20th International Conference on Computational Science (ICCS), Springer (LNCS).
  abstract       url      .pdf (draft)      .bib       .data  
conference  evolutionary computing  feature selection  internet security  metaheuristics  natural language processing  phishing  spam
Tushaar Gangavarapu, Jaidhar CD, and Bhabesh Chanduka (2020): Applicability of machine learning in spam and phishing email filtering: review and approaches. Artificial Intelligence Review (AIRE), Springer Nature.
  abstract       url      .pdf (draft)      .bib       code      .data  
journal  feature engineering  machine learning  phishing  Python  spam
Aditya Jayasimha*, Tushaar Gangavarapu*, Sowmya Kamath S, and Gokul S Krishnan (2020): Deep Neural Learning for Automated Diagnostic Code Group Prediction Using Unstructured Nursing Notes. In Proceedings of the ACM India Joint International Conference on Data Science and Management of Data (7th ACM IKDD CoDS and 25th COMAD), ACM (pp. 152–160).
  abstract       url      .pdf      .poster      .bib       .data  
conference  clinical decision support systems  deep learning  disease prediction  healthcare analytics  multi-label classification  natural language processing
2019
Tushaar Gangavarapu, Aditya Jayasimha, Gokul S Krishnan, and Sowmya Kamath S (2019): Predicting ICD-9 code groups with fuzzy similarity based supervised multi-label classification of unstructured clinical nursing notes. Knowledge-Based Systems (KnoSys), Elsevier 190:105321.
  abstract       url      .pdf (draft)      .highlights      .bib       .data  
journal  clinical decision support systems  disease prediction  healthcare analytics  ICD-9 code group prediction  machine learning  natural language processing
Tushaar Gangavarapu, Gokul S Krishnan, and Sowmya Kamath S (2019): Coherence-based Modeling of Clinical Concepts Inferred from Heterogeneous Clinical Notes for ICU Patient Risk Stratification. In Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL), ACL (pp. 1012–1022).
  abstract       url      .pdf      .poster      .bib       .data  
conference  healthcare analytics  clinical decision support systems  disease prediction  multi-label classification  natural language processing  deep learning
Tushaar Gangavarapu*, Aditya Jayasimha*, Gokul S Krishnan, and Sowmya Kamath S (2019): TAGS: Towards Automated Classification of Unstructured Clinical Nursing Notes. In Proceedings of the 24th International Conference on Applications of Natural Language Processing to Information Systems (NLDB), Springer (LNCS 11608, pp. 195–207).
  abstract       url      .pdf (draft)      .slides      .bib       .data  
conference  healthcare analytics  disease group prediction  natural language processing  risk assessment systems  deep learning
Tushaar Gangavarapu and Nagamma Patil (2019): A novel filter—wrapper hybrid greedy ensemble approach optimized using the genetic algorithm to reduce the dimensionality of high-dimensional biomedical datasets. Applied Soft Computing (ASOC), Elsevier 81:105538.
  abstract       url      .pdf (draft)      .highlights      .slides      .bib  
journal  biomedical data  genetic algorithm  greedy ensemble  high-dimensional data  hybrid feature selection  parameter optimization

Scholar | GitHub | Twitter

Tushaar Gangavarapu [tg352@cornell.edu];