TAGS: Towards Automated Classification of Unstructured Clinical Nursing Notes

24th International Conference on Applications of Natural Language to Information Systems NLDB 2019, University of Salford, United Kingdom

Tushaar Gangavarapu*, Aditya Jayasimha*, Gokul S Krishnan, and Sowmya Kamath S sowmyakamath@nitk.edu.in

Healthcare Analytics and Language Engineering (HALE) Lab Department of Information Technology National Institute of Technology Karnataka, Mangaluru, India

Introduction

- Intensive care units are equipped with high medical resources^[Huddar'16]
 - Risk assessment: etiology?
 - Staff and resources: bottleneck
 - Prevention: Postonset!
- Low rate of EMR adoption in developing countries: information loss?
- Clinical nursing notes (caregivers)
 - Subjective and objective assessments
 - Patient-centric and evidence-based
 - Raw, sparse, jargon, inconsistent, ...

1	NURSING DOCUMENTATION 17th August 2013
	62 you role having driver with friends when he experienced a sudden anset of retro-sternal chest pain. Rin was described as a heaviness a radiated into his @ shoulder.
<u>0/a</u> : 0930h	Accompanied by <u>SOB</u> , nousia and a sharp accipital headache. A: Clear. B: Exprove c respirations. Intensity <u>R=L</u> . Nil adventitions as. Inreath sounds. Symmetrical chest excursion. SeO2: 98% (Room Air) C: Norrocardic Normotensive. Strong, regular rodial pulse Centrally a peripherally well perfused
	Centrally a peripherally well perfused D: Alert, oriented a co-operative. PERTL (3m) E: Skin warm a dry to touch. Nil bruising or rashes evident
Pain:	Pain currently rated @ 4/10. Described as an aching sensation located 1) orderior chest a radiating to 1) thumb.
Plan:	ECG, IV access, Bloods, Analyesia
1000112	s: 194 states chest pain has resolved: 1-2/10.
	- Igrouion

A sample de-identified nursing note from critical care

[Huddar'16] V. Huddar et al. "Predicting complications in critical care using heterogeneous clinical data." IEEE Access 4 (2016): 7988-8001.

2

Existing Methods

Work(s)	Methodology	Highlights	Remarks	
Pirracchio et al. 2016 [1]	Super learner algorithm for the clinical task of ICU mortality prediction	Outperformed several severity scores	Did not benchmark against recent methods	
Johnson et al. 2017 <mark>[2]</mark>	Case study on ICU mortality prediction highlighting the challenges in replicating results	Emphasis on the need to improve the way of performance reporting	Used feature sets rather than unstructured text	
Harutyunyan et al. 2017 <mark>[3]</mark>	Multitask recurrent neural networks on four clinical prediction tasks	Promising results of deep learning approaches	Only benchmarked against LR and LSTM	
Purushotham et al. 2018 <mark>[4]</mark>	Benchmarking of a suite of five clinical prediction tasks including ICD-9 code group prediction	Exhaustive benchmarking of deep architectures	Utilized only feature sets in the form of numerical assessments	
Krishnan and Kamath 2018 <mark>[5</mark>]	ICU mortality prediction task using Word2Vec embeddings of ECG reports	Unsupervised data cleaning approach with clustering	Did not utilize deep neural architectures	

Please cite this article as: T. Gangavarapu, A. Jayasimha, G.S. Krishnan, and S.S. Kamath, "TAGS: Towards Automated Classification of Unstructured Clinical Nursing Notes," International Conference on Applications of Natural Language to Information Systems, Springer, Cham, 2019, https://doi.org/10.1007/978-3-030-23281-8_16

3

Existing Methods and Outcomes

- Systemized collection of patient data in the form of structured electronic medical records
 - Numerical assessments: lab investigations, medications, demographics, ...
 - Evidence-based precision medicine modeling?
 - Patient-specific?: unstructured clinical nursing notes
- Digitization: manual or automated conversion of nursing notes to EMRs
- AI-assisted modeling strategies: deep neural architectures in benchmarking of most state-of-the-art models?
- Voluminosity of nursing notes
 - Record of every observation made (subjective and objective)
 - Efficacy of underlying CDSS: information extraction and consolidation
- Multiple code assessment: manifold nature of disease symptoms and infections^[Baumel'18]!

^[Baumel'18] T. Baumel *et al.* "Multi-label classification of patient notes: case study on ICD code assignment." Workshops at 32nd AAAI Conference. 2018.

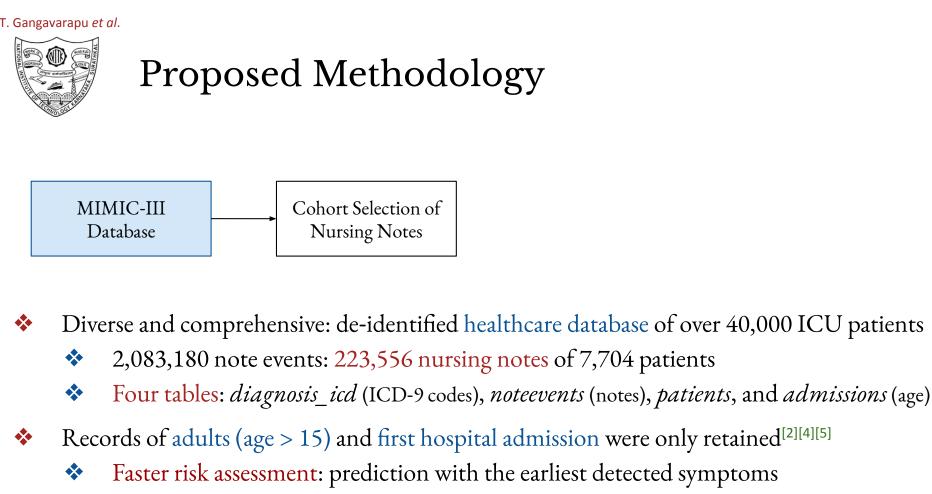
4

Modeling similar notes!

Key Contributions

Aim: Development of a clinical decision support system to facilitate accurate risk assessment as ICD-9 code group prediction using unstructured clinical nursing notes

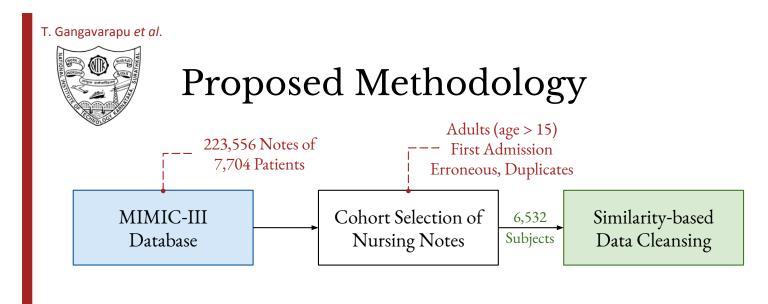
- Design of a fuzzy token-based similarity matching approach to effectively aggregate the voluminous unstructured clinical nursing notes of a patient, improving the efficacy of clinical decision making
- Utilization of vector space and coherence-based topic modeling approaches to extract the rich information available in unstructured clinical nursing notes and obtain optimal data representations
- Eliminating the dependency on the EMRs which is crucial in developing countries, through an effective approach that utilizes the abundantly available unstructured clinical text for disease prediction



***** Data cleaning: erroneous entries (*iserror* of *noteevents*) and duplicates \rightarrow 6,532 patients

Please cite this article as: T. Gangavarapu, A. Jayasimha, G.S. Krishnan, and S.S. Kamath, "TAGS: Towards Automated Classification of Unstructured Clinical Nursing Notes," International Conference on Applications of Natural Language to Information Systems, Springer, Cham, 2019, https://doi.org/10.1007/978-3-030-23281-8_16

6

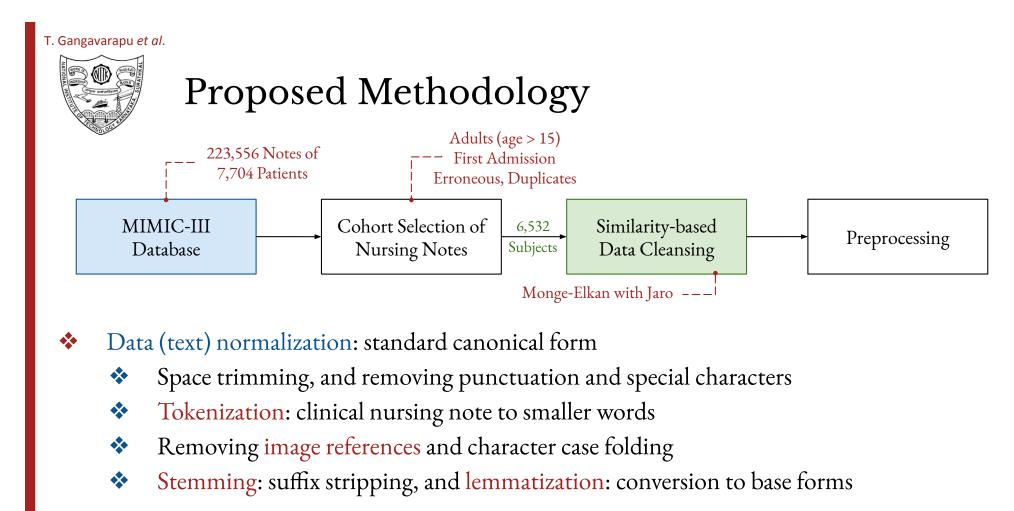


- Aggregation of nursing notes: voluminosity of nursing notes with near-duplicate entries
 Monge-Elkan (ME) score: alternate names, clinical abbreviations, and medical jargon
 - Jaro score: spelling errors and normalization

$$\operatorname{ME}_{\operatorname{Jaro}}(\eta_p, \eta_q) = \frac{1}{|\eta_p|} \sum_{i=1}^{|\eta_p|} \max \left\{ \operatorname{Jaro}(\mathcal{C}_i^{(p)}, \mathcal{C}_j^{(q)}) \right\}_{j=1}^{|\eta_q|} \quad \left| \operatorname{Jaro}(\mathcal{C}_m, \mathcal{C}_n) = \begin{cases} 0, & \text{if } c = 0\\ \frac{1}{3} \left(\frac{c}{|\mathcal{C}_m|} + \frac{c}{|\mathcal{C}_n|} + \frac{2c-t}{2c} \right), & \text{otherwise} \end{cases} \right\}$$

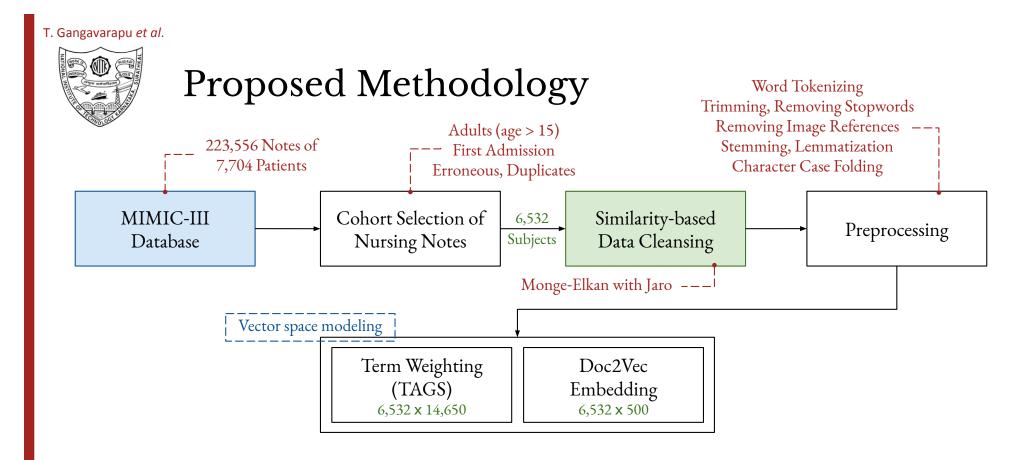
Fuzzy-similarity threshold (0.825): merge or purge mechanism*

* Note that the merge or purge mechanism holds only for the nursing notes, and the ICD-9 codes across the corresponding nursing notes are always merged. 6



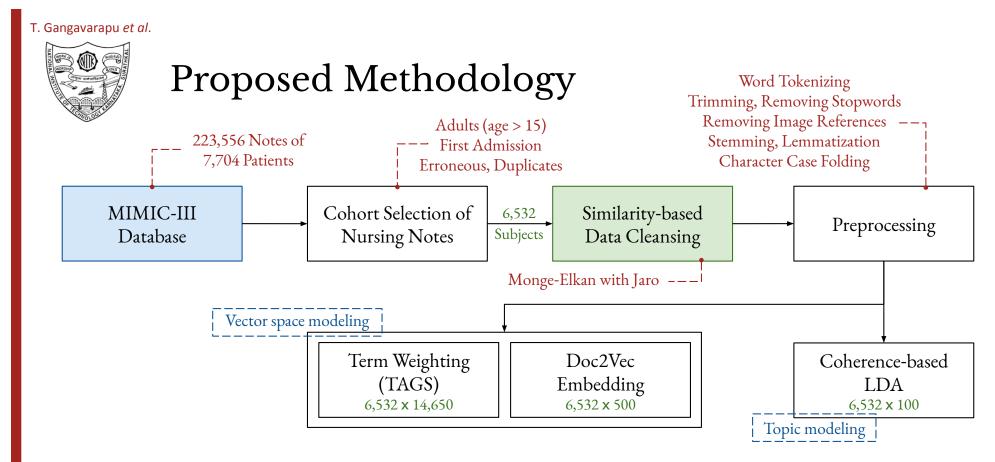
• Overfit threshold: words in less than 10 nursing notes (computational complexity)

6



- Vector space modeling: representation of each point in a multidimensional vector space
- Two variants: TAGS (term weighting scheme) and Doc2Vec (neural paragraph network)

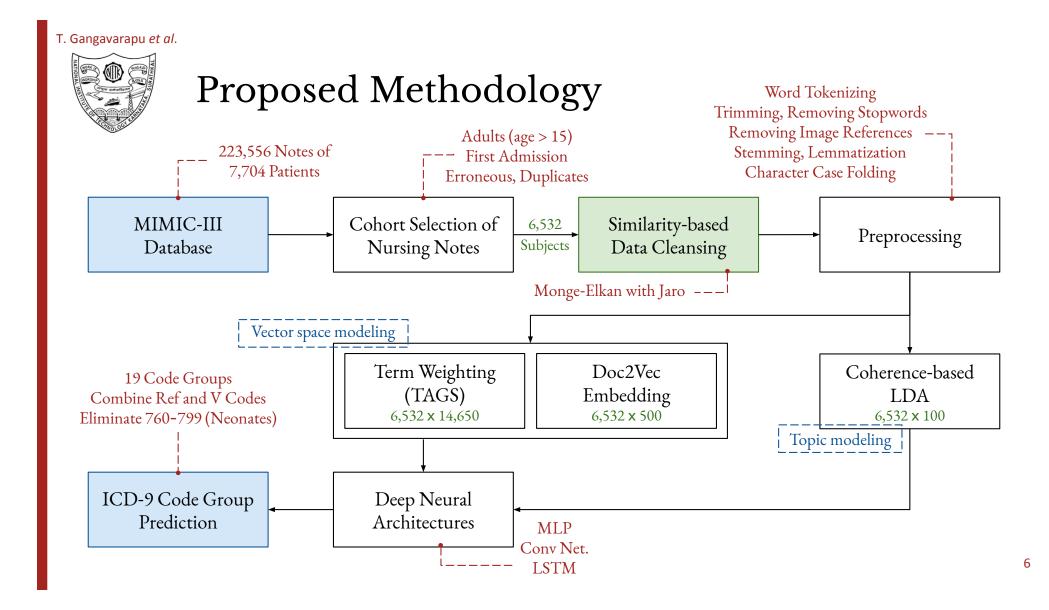
6



- Topic modeling: finding a set of topics (collection of tokens) from a set of nursing notes
- Coherence scoring ensures higher guarantee on human interpretability

Please cite this article as: T. Gangavarapu, A. Jayasimha, G.S. Krishnan, and S.S. Kamath, "TAGS: Towards Automated Classification of Unstructured Clinical Nursing Notes," International Conference on Applications of Natural Language to Information Systems, Springer, Cham, 2019, https://doi.org/10.1007/978-3-030-23281-8_16

6



Modeling of Clinical Concepts: Vector Space

- Vector space modeling: each nursing note is a point in multidimensional space ($d \ll |V|$)
- Term weighting scheme (transformation of bag-of-words): captures the syntax
 - Occurrence frequency: captures the importance of a term
 - Specificity: captures the rarity of a term

$$W_i^{(p)} = \begin{cases} \left(1 + \log_2 f_i^{(p)}\right) \left(\log_2 \frac{N}{|w^{(p)}|}\right), & \text{if } f_i^{(p)} > 0\\ 0, & \text{otherwise} \end{cases}$$

$$\rightarrow \quad \{W_i^{(p)}\}_{i=1}^{|\mathbb{V}|} \quad \boxed{\text{Machine processable form}}$$

- Curse of high dimensionality and sparsity!
- Doc2Vec (paragraph vectors): captures the semantics in the nursing notes (e.g., *bone* and *melanoma*)
 - Neural network: one shallow layer to learn distributed representations
 - Content-related measurement: syntax and semantics
 - Paragraph Vector-Distributed Memory: preserves word order^[Le'14]

^[Le'14] Q. Le and T. Mikolov. "Distributed representations of sentences and documents." International conference on machine learning. 2014.

7

Modeling of Clinical Concepts: Topics

- Topic modeling: each nursing note is represented as a set of clinical topic clusters
- Latent Dirichlet Allocation: cluster analysis using Dirichlet distribution
 - Bayesian framework: documents, topics, and terms built on bag-of-words
 - Flat and soft probabilistic clustering: terms to topics, nursing notes to topics
 - Context-related assessment: captures syntax and latent semantics
- Topic Coherence: determine the optimal number of topics
 - Evaluation: human interpretability of the generated topics
 - Semantic similarity between high scoring terms
 - Confirmation metric: Normalized Pointwise Mutual Information (NPMI) score
 - NPMI: associations and collocations between terms^[Aletras'13]
- Number of topics (100): vary number of topics in LDA model and compute coherence!

[Aletras'13] N. Aletras and M. Stevenson. "Evaluating topic coherence using distributional semantics." Proceedings of IWCS 2013–Long Papers. 2013.

8

ICD-9 Code Group Prediction

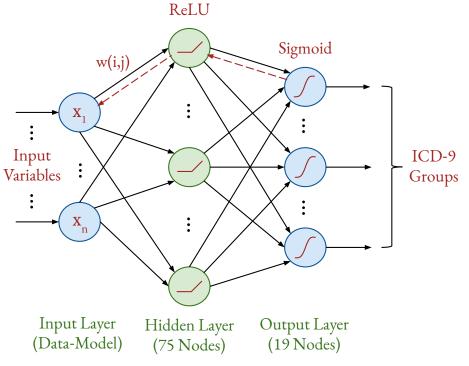
A DO THE		19 Code Groups –	001 – 139	Infectious and Parasitic Diseases	
		1	140 – 239	Neoplasms	
*	Inte	rnational classification of diseases:	240 - 279	Endocrine, Nutritional, Metabolic, Immunity	
	*	Diagnostic and group taxon amy	280 - 289	Blood and Blood-Forming Organs	
	•••	Diagnostic code group taxonomy	290 - 319	Mental Disorders	
	*	Epidemiology, research, billing,	320 - 389	Nervous System and Sense Organs	
	*	High grapularity: categorization!	390 - 459	Circulatory System	
	***	High granularity: categorization!	460 - 519	Respiratory System	
	*	Disease-specific assessment	520 - 579	Digestive System	
*		1	580 - 629	Genitourinary System	
	Mu	lti-label classification: groups	630 - 677	Pregnancy, Childbirth, and the Puerperium	
	*	Manifold nature of symptoms	680 – 709	Skin and Subcutaneous Tissue	
	*	A correction, multiple and a groups	710 – 739	Musculoskeletal System and Connective Tissue	
	•	Aggregation: multiple code groups	740 – 759	Congenital Anomalies	
*	Dia	gnostic ICD-9 code groups (19):	-760 - 779	Conditions Originating in the Perinatal Period	
			780 – 789	Symptoms	
	*	760 – 779: no records	790 – 796	Nonspecific Abnormal Findings	
	*	Supplemental V and Ref. codes	797 – 799	Ill-defined and Unknown Causes of Morbidity, Mortality	
	-		800 – 999	Injury and Poisoning	
<u>http://</u>	<u>/tdrdata.</u>	com/ipd/ipd_SearchForICD9CodesAndDescriptions.aspx/	Ref. and V Codes	Reference and Supplemental V-Codes	

Please cite this article as: T. Gangavarapu, A. Jayasimha, G.S. Krishnan, and S.S. Kamath, "TAGS: Towards Automated Classification of Unstructured Clinical Nursing Notes," International Conference on Applications of Natural Language to Information Systems, Springer, Cham, 2019, https://doi.org/10.1007/978-3-030-23281-8_16

9

Deep Neural Architectures

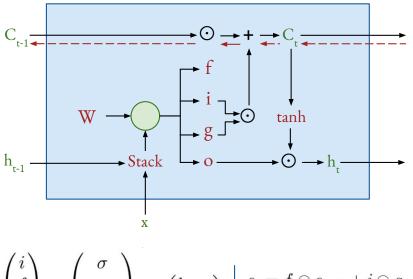
- Multi-layer perceptron: feed-forward neural network
 - Adaptive learning, fault tolerance, ...
 - Layer-to-layer non-linear activation!
 - Backpropagation: optimal weights



10

Deep Neural Architectures

- Multi-layer perceptron: feed-forward neural network
 - Adaptive learning, fault tolerance, ...
 - Layer-to-layer non-linear activation!
 - Backpropagation: optimal weights
- Long short term memory: long term dependencies
 - Vanishing gradient: additive interactions
 - Gated mechanism: i, f, o, and g gates
 - Multi-label classification: LSTM sigmoid

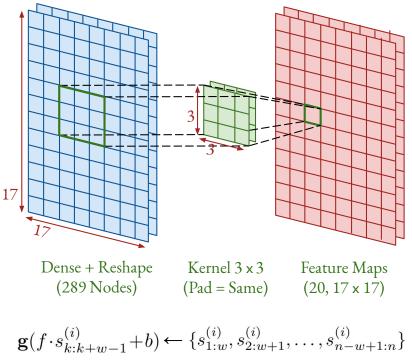


$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} o \\ \sigma \\ \sigma \\ \tanh \end{pmatrix} W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix} \begin{vmatrix} c_t = f \odot c_{t-1} + i \odot g \\ h_t = o \odot \tanh(c_t) \end{vmatrix}$$

10

Deep Neural Architectures

- Multi-layer perceptron: feed-forward neural network
 - Adaptive learning, fault tolerance, ...
 - Layer-to-layer non-linear activation!
 - Backpropagation: optimal weights
- Long short term memory: long term dependencies
 - Vanishing gradient: additive interactions
 - Gated mechanism: i, f, o, and g gates
 - Multi-label classification: LSTM sigmoid
- Convolutional neural network: minimal MLP
 - Hyper-parameter reduction
 - Classification: conv. flatten and dense



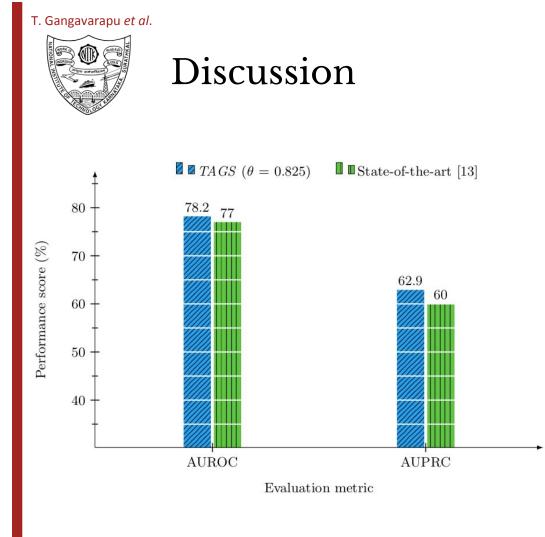
10

Experimental Validation

- Primary challenge: multi-label classification—pairwise comparison of actual and predicted!
- Evaluation (7): accuracy, MCC, F1, ranking loss*, coverage error*, AUPRC, and AUROC

Data Model	Classifian	Performance Scores				
	Glassifier	ACC	AUPRC	AUROC	MCC	F1
774.00	MLP	0.8130 ± 0.0005	0.6291 ± 0.0027	0.7738 ± 0.0013	0.5704 ± 0.0020	0.6803 ± 0.0024
TAGS (6,532 x 14,650)	LSTM	0.7946 ± 0.0011	0.5990 ± 0.0014	0.7646 ± 0.0025	0.5365 ± 0.0027	0.6661 ± 0.0028
(0,552 × 14,050)	CNN	0.8049 ± 0.0007	0.6153 ± 0.0031	0.7817 ± 0.0023	0.5594 ± 0.0022	0.6785 ± 0.0032
	MLP	0.7903 ± 0.0019	0.5914 ± 0.0016	0.7562 ± 0.0013	0.5212 ± 0.0032	0.6559 ± 0.0019
Doc2Vec (6,532 x 500)	LSTM	0.8005 ± 0.0017	0.6076 ± 0.0033	0.7600 ± 0.0010	0.5386 ± 0.0032	0.6655 ± 0.0022
(0,932 × 900)	CNN	0.7737 ± 0.0012	0.5686 ± 0.0030	0.7433 ± 0.0019	0.4879 ± 0.0034	0.6381 ± 0.0028
	MLP	0.7905 ± 0.0017	0.5965 ± 0.0016	0.7497 ± 0.0017	0.5221 ± 0.0031	0.6397 ± 0.0027
LDA (6,532 x 100)	LSTM	0.7842 ± 0.0013	0.5865 ± 0.0012	0.7431 ± 0.0017	0.5078 ± 0.0014	0.6329 ± 0.0027
(0,552 × 100)	CNN	0.8034 ± 0.0016	0.6181 ± 0.0011	0.7649 ± 0.0011	0.5542 ± 0.0022	0.6643 ± 0.0013

* Coverage error and (label) ranking loss are not presented here.



* This study employs five-fold cross-validation as the evaluation scheme.

- Loss of information: EMR coding process from nursing notes
- TAGS: fuzzy aggregation by similarity
 - Patient centricity: nursing notes
 - Outperforms Doc2Vec and LDA
 - Class imbalance: AUPRC
 - MCC: balanced score
 - Seven benchmarking* metrics
 - Outperforms state-of-the-art model^[4]
 - ✤ AUPRC: 5%
 - **♦ AUROC**: 1.55%

12

Concluding Remarks

- Clinical nursing notes: treasure-trove of valuable patient-specific information
 - Patient-centric and evidence-based treatments
 - Accurate risk assessment as ICD-9 code group prediction
 - Modeling: rawness, sparsity, medical jargon, complex temporal nature, inconsistency, ...
- Voluminosity of clinical nursing notes: similar or near-duplicate patient records
 - Aggregation: aids clinical decision making; reduces cognitive burden
 - Fuzzy similarity based nursing note matching: Monge-Elkan with Jaro score
- Existing models including state-of-the-art^[4]: structured nature of EMRs
 - TAGS outperforms by 5% in AUPRC and 1.55% in AUROC
 - Performance assessment: seven benchmarking metrics (including AUPRC and AUROC)
- Research dependency on EMRs: TAGS—countries with low EMR adoption rates!

Acknowledgments

This work is funded by the Government of India's DST-SERB Early Career Research Grant (ECR/2017/001056) to Sowmya Kamath S

14

References

- [1] Pirracchio, R. (2016). Mortality Prediction in the ICU Based on MIMIC-II Results from the Super ICU Learner Algorithm (SICULA) Project. In *Secondary Analysis of Electronic Health Records* (pp. 295-313). Springer, Cham.
- [2] Johnson, A. E., Pollard, T. J., and Mark, R. G. (2017, November). Reproducibility in critical care: a mortality prediction case study. In *Machine Learning for Healthcare Conference* (pp. 361-376).
- [3] Harutyunyan, H., Khachatrian, H., Kale, D. C., Steeg, G. V., and Galstyan, A. (2017). Multitask learning and benchmarking with clinical time series data. arXiv preprint arXiv:1703.07771.
- [4] Purushotham, S., Meng, C., Che, Z., and Liu, Y. (2018). Benchmarking deep learning models on large healthcare datasets. *Journal of biomedical informatics*, 83, 112-134.
- [5] Krishnan, G. S., and Kamath, S. S. (2018, June). A Supervised Learning Approach for ICU Mortality Prediction Based on Unstructured Electrocardiogram Text Reports. In *International Conference on Applications of Natural Language to Information Systems* (pp. 126-134). Springer, Cham.
- [6] Bouma, G. (2009). Normalized (pointwise) mutual information in collocation extraction. *Proceedings of GSCL*, 31-40.

15

HALE Lab: AI-assisted NLP

Healthcare Analytics and Language Engineering (HALE) Lab Research on Healthcare Analytics and Informatics, and also on Language and Linguistics using NLP

Headed by: Dr. Sowmya Kamath S Department of Information Technology National Institute of Technology Karnataka, Mangaluru, India

Research Team:

Gokul S Krishnan Karthik K Bhat Veena Mayya

Tushaar Gangavarapu Aditya Jayasimha

https://halelabnitk.github.io/