A Novel Filter-Wrapper Hybrid Greedy Ensemble Approach Optimized Using the Genetic Algorithm to Reduce the Dimensionality of High-Dimensional Biomedical Datasets

> Tushaar Gangavarapu Nagamma Patil

Department of Information Technology

Introduction

- Whether more information leads to more informed decision making?
 - Irrelevancy: low learnability
 - Redundancy: high training time
 - Noise: classification errors
 - Computation cost: expensive
- How to choose a feature selection approach that matches the problem structure and captures the inherent patterns in the data?
 - Intuition-based: unreliable
 - Brute force: infeasible
 - Determine heuristically: convergence?

Large number of features can be extracted using genome sequences*

*Varshney et al. "Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments." Nature (2017).

2

Literature Survey

Work(s)	Methodology	Highlights	Remarks
Tu et al. 2019 [1]	Multi-strategy grey wolf optimization with three search strategies and parameter optimization	Effective feature Selection with disperse foraging	Heuristic search with convergence problem
Dong et al. 2018 [2]	Hybrid genetic algorithm with feature granulation	Faster feature selection due to bottom-up search	Heuristic search not guided by correlation
Masood et al. 2017 [3]	Hybrid and wrapper algorithms based on an incremental search using an ELM classifier	RIG and ELM based feature selection with good performance	Extremely data specific
Min et al. 2014 [4]	Backtracking and heuristic search algorithm to search for optimal feature subspaces	Similar performance of backtracking and heuristic algorithms	Heuristic search with convergence problem
Ekwevugbe et al. 2013 [5]	Filter approaches to determine the optimal feature subspace	Correlation-based approaches with faster training	Classifier independence limits accuracy

Outcome of Literature Survey

- Which feature selection?: multiple filter, wrapper, embedded, hybrid, and heuristic approaches; which one accurately matches the problem structure?
- Filter-based approaches: faster computation, but heavily dependence on correlation and classifier independence limits their accuracy
- Wrapper-based, embedded, and hybrid approaches: domain adaptability and high computational cost of training, but reliable performance
- Metaheuristic search approaches: population-based mechanism guides the search, but convergence problem and correlation-unguided search can be a bottleneck!
- Need for an ensemble?: set of predetermined feature selection approaches
 - Voting-based ensemble?: simply a brute force ensemble
 - Greedy ensemble?: penalize bad-performing selection methods and their features
- Time and accuracy tradeoff: use a hybrid of filter and wrapper approaches

Key Contributions

Aim: Generate an optimal and instructive feature subspace with a lower computational complexity

- Design of a filter-wrapper hybrid ensemble selection approach that kindles an optimal feature subspace by greedily combining the subspaces generated by various predetermined feature selection techniques based on specific performance dependant penalty parameters
- Leveraging heuristic search strategies such as greedy parameter-wise optimization and GA to determine the optimal values of the penalty factors which affect how different feature subspaces are ensembled to engender an optimal feature subspace
- We present detailed benchmarking results of our hybrid greedy ensemble feature selection approach on three distinct high-dimensional biomedical datasets. Our experimental results indicate the efficiency and robustness of the proposed approach over the base feature selection methods, and other prolific filter and wrapper methods

Biomedical Datasets

Dataset	#Samples	#Dimensions	#Classes (#samples per class)	Balanced?
TIS ^[6]	13,375	927	2 (3,312; 10,063)	No
Skin Cancer ^[7]	10,015	2,352	7 (327; 514; 1,099; 115; 6,705; 142; 1,113)	No
Seizure ^[8]	11,500	179	5 (2,300; 2,300; 2,300; 2,300; 2,300)	Yes

- TIS: extracted from genomic sequences of a selected set of vertebrates (from GenBank), involving the process of finding sites where translation of mRNA to proteins initiates
- Skin Cancer: extracted from the pixel information of 28×28 RGB dermatoscopic images of the Skin Cancer MNIST: HAM10000 dataset
- Epileptic Seizure Recognition: consists of five sets of single channel 23.6 seconds long electroencephalogram segments that are weakly stationary and selected after a visual inspection of artifacts

Proposed Methodology

Filter-Wrapper Hybrid Greedy Ensemble

Algorithm 1: Proposed hybrid greedy ensemble feature selection **Input:** S_2 -All-Features-Acc: Average accuracy with all features of S_2 . S_2 -Accuracies: List of average accuracies from predetermined methods, \mathcal{FS} -Lists: List of all selected feature subsets totalFeat: Total number of features in the given dataset, ρ_m List: List of ranks of predetermined selection methods, ψ : Accuracy penalty parameter, τ : Feature penalty parameter, θ : Selection threshold. Output: Hybrid FS: Greedily selected optimal feature subset. 1: accScores $\leftarrow [0] * |\mathcal{FS}_{\text{-Lists}}|$ 2: overallScores $\leftarrow [0]^*$ totalFeat 3: for $idx \leftarrow 0$ to $|\mathcal{FS}_Lists|$ do accScores[idx] \leftarrow accScore(method, |FS_Lists|, ρ_m _List[idx]) 4. if S_2 -Accuracies/idx] < S_2 -All-Features-Acc then 5: 6: $accScores[idx] \leftarrow accScores[idx]/\psi$ 7: end for $featIdx \leftarrow 0$ to totalFeat do 8: featScore \leftarrow featScore(feat, \mathcal{FS} _Lists[idx], featIdx + 1) 9: if S_2 -Accuracies/idx] > S_2 -All-Features-Acc and feat $\notin FS$ -Lists/idx] then 10: featScore \leftarrow featScore * τ 11: 12: end 13: overallScore \leftarrow featScore * accScore[idx] $overallScores[featIdx] \leftarrow overallScores[featIdx] + overallScore$ 14: 15: end 16: end 17: hybridFeatures \leftarrow [] 18: for score \in overallScores do 19 if $score > \theta$ then 20: hybridFeatures.append(feat) 21: end 22: end 23: return hybridFeatures

Scoring of features (featScore) and selection methods (accScore): $featScore(f, \mathcal{FS}, \rho_f) = \begin{cases} \frac{|\mathcal{FS}| - \rho_f + 1}{|\mathcal{FS}|}, & f \in \text{ranked } \mathcal{FS} \\ \frac{1}{|\mathcal{FS}|}, & f \in \text{unranked } \mathcal{FS} \\ \frac{-1}{|\mathcal{FS}|}, & f \notin \mathcal{FS} \end{cases}$ $accScore(m, \mathcal{M}, \rho_m) = \frac{|\mathcal{M}| - \rho_m + 1}{|\mathcal{M}|}$ Penalty parameters for greedy ensembling of base feature subspaces Accuracy penalty: accScore/ ψ Feature penalty: featScore× τ Overall feature scoring and hybrid feature selection (θ): $overallScore(f, \mathcal{M}) = \sum_{i=1}^{\mathcal{M}} featScore(f) \times accScore(m)$ Optimization of penalty parameters

8

Results with Optimization of Penalty Parameters

The effect of ψ , τ , and θ on Skin Cancer dataset (greedy parameter-wise optimization)

The effect of ψ , τ , and θ on Skin Cancer dataset (genetic algorithm (N = 50, p_c = 0.6, p_m = 0.1))

9

Results with Genetic Optimization: Comparison

Dataset -	Chromosome		me	Sample (<i>S</i> ₃) Average Accuracy (%)		
	ψ	τ	θ	Base Selection Method (Highest)	Proposed Ensemble	
TIS ^[6]	6.08	20.83	0.78	IgFeatureEval: 83.948	87.449	
Skin Cancer ^[7]	1.07	7.72	0.14	CfsSubsetEval: 68.534	78.912	
Seizure ^[8]	1.39	2.58	0.01	None: 47.131	51.811	

– Dataset _	Sample (<i>S</i> ₃) Average Accuracy (%)					
	Filter Approaches		Wrapper Approaches		Dropogod Croody	
	RF Feature Importance	Chi-Square Test	RFE + SVM (Linear)	RFE + SVM (RBF)	Ensemble	
TIS ^[6]	84.182	84.220	79.968	83.290	87.449	
Skin Cancer ^[7]	67.356	67.794	67.307	67.375	78.912	
Seizure ^[8]	46.601	46.299	46.818	50.450	51.811	

Conclusions and Future Work

- Proposed a penalty based filter-wrapper hybrid greedy ensemble approach to facilitate optimal feature selection
- Ensemble greedily selects the features from the subspaces obtained from the predetermined base selection methods
- Specific performance dependent penalty parameters were used to penalize the base feature subspaces essential to achieve the optimal ensembling of those subspaces
- At any point in time, only a stratified sample and not the entire dataset is not used for computation; the computational complexity is significantly reduced
- We leverage effective heuristic search strategies including the greedy parameter-wise optimization and the GA to obtain optimal values of the penalty parameters
- The proposed method introduces additional (penalty) parameters which require prior training to obtain the optimal setting in advance

References

- [1] Tu, Qiang, Xuechen Chen, and Xingcheng Liu. "Multi-strategy ensemble grey wolf optimizer and its application to feature selection." Applied Soft Computing 76 (2019): 16-30. Accessible: <u>sciencedirect/science/article/pii/S1568494618306793</u>.
- [2] Dong, Hongbin, et al. "A novel hybrid genetic algorithm with granular information for feature selection and optimization." Applied Soft Computing 65 (2018): 33-46. Accessible: <u>sciencedirect/science/article/pii/S1568494618300048</u>.
- [3] Masood, Mustafa K., Yeng Chai Soh, and Chaoyang Jiang. "Occupancy estimation from environmental parameters using wrapper and hybrid feature selection." Applied Soft Computing 60 (2017): 482-494.
- [4] Min, Fan, Qinghua Hu, and William Zhu. "Feature selection with test cost constraint." International Journal of Approximate Reasoning 55.1 (2014): 167-179.
- [5] Ekwevugbe, Tobore, Neil Brown, and Vijay Pakka. "Real-time building occupancy sensing for supporting demand driven hvac operations." (2013). Accessible: <u>oaktrust.library.tamu.edu/handle/1969.1/151431</u>.
- [6] Pedersen, Anders Gorm, and Henrik Nielsen. "Neural network prediction of translation initiation sites in eukaryotes: perspectives for EST and genome analysis." Ismb. Vol. 5. 1997. Accessible: <u>nus/~wongls/courses/cs2220/2008/TIS-data.html</u>.
- [7] Tschandl, Philipp, Cliff Rosendahl, and Harald Kittler. "The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions." Scientific data 5 (2018): 180161.
- [8] Andrzejak, Ralph G., et al. "Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state." Physical Review E 64.6 (2001): 061907.

12