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* Risk stratification as a multi-label problem. * Computational complexity vs. granularity. 3
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EnTAGS: Deep Neural Learning Number of nursing notes
* Clinical nursing notes maintain objective and subjective assessments of a
o To facilitate experimental validation and benchmarking of the T patient’s condition — can be utilized to uncover hidden clues about the
proposed strategy, we utilized the MIMIC-IIl database database mental state of a patient.
comprising of of diverse health data of more than 40,000 ' * Modeling nursing notes is challenging due to their high-dimensionality,
Intensive Care Unit (ICU) patients. Cohort selection rawness, sparsity, complex linguistic and temporal nature, inconsistent
* Patient cohort: consists of nursing notes corresponding to of nursing notes abbreviations, and occurrence of rich medical jargon.
7,638 patients, with a median age of 66 years. !
. , , , Eliminating dependency on structured EHRs is essential in developing nations
e Data cleaning: faulty and inconsistent records, duplicate Data cleaning K
entries, incorrect code mapping, and others — final cohort I
of 6,532 patients. Dt }
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* EnTAGS for aggregation by independently (EnTAGS) EXperlmentS . Patlent COhort
modeling the nursing notes of a patient
recorde§ over timegfollowed byPNMF-TW v Dataset: Medical Information Mart for Intensive Care (MIMIC-III)
modelin ’ Bagof | || ModelingNMF |, | Term * Nursing notes of the database with the same selection criteria as employed in the
& words topics weighting G '9
state-of-the-art[Gangavarapu’l9],

* Deep neural learning for automated
diagnostic code group prediction: CNN, LSTM, ' { { }

* Records of neonates (age < |5) were eliminated from the chosen cohort.
* Only notes corresponding to the first admission of a patient to a hospital.

cascaded CNN-LSTM, and partitioned GRU. CNN LSTM CNN.LSTM GRU
* EnTAGS: the nursing notes of a patient are not aggregated by the note content.
Parameter Total I * Independent modeling of notes reduces false negatives — false alarms vs.
Clinical nursing notes 223,556 severity of not predicting a possible disease?
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e o / Discussion: TW-NMF EnTAGS Model

- * Despite the use of NMF-modeled data with deep neural classifiers, we observe
improved performance.
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* NMF facilitates disentanglement of the hidden structure of the underlying data by
learning features that exhibit sparse part-based representations.
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* NMF forces data encoding to be nonnegative — additive representations of data.

kernel (17x1200)
recurrent_kernel
recurrent_activation

units

\

NMF modeling is particularity well-suited to train deep neural models

4 Concluding Remarks N

* Patient-specific information in the nursing notes to facilitate multi-label ICD-9
code group prediction.

* Promising results of 82.82% in accuracy, 70.89% in AUPRC,and 63.68% in MCC
score; and outperformed the state-of-the-art model by |1.87% in accuracy, 12.68%
in AUPRC, and 11.64% in MCC score.
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Feature modeling using NMF eliminates the structure, so why CNN-LSTM?
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