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Abstract

In hospitals, caregivers are trained to chronicle the subtle changes in the clinical

conditions of a patient at regular intervals, for enabling decision-making. Care-

givers’ text-based clinical notes are a significant source of rich patient-specific

data, that can facilitate effective clinical decision support, despite which, this

treasure-trove of data remains largely unexplored for supporting the predic-

tion of clinical outcomes. The application of sophisticated data modeling and

prediction algorithms with greater computational capacity have made disease

prediction from raw clinical notes a relevant problem. In this paper, we pro-

pose an approach based on vector space and topic modeling, to structure the

raw clinical data by capturing the semantic information in the nursing notes.

Fuzzy similarity based data cleansing approach was used to merge anomalous

and redundant patient data. Furthermore, we utilize eight supervised multi-

label classification models to facilitate disease (ICD-9 code group) prediction.

We present an exhaustive comparative study to evaluate the performance of the

proposed approaches using standard evaluation metrics. Experimental valida-
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tion on MIMIC-III, an open database, underscored the superior performance

of the proposed Term weighting of unstructured notes AGgregated using fuzzy

S imilarity (TAGS ) model, which consistently outperformed the state-of-the-art

structured data based approach by 7.79% in AUPRC and 1.24% in AUROC.

Keywords: Clinical Decision Support Systems, Disease Prediction, Healthcare

Analytics, ICD-9 Code Group Prediction, Machine Learning, Natural

Language Processing.

1. Introduction1

Disease prediction and quantification of patients’ health data have been shown2

to have significant contributions in improving clinical care and management [70].3

Every year, over 30 million patients visit hospitals in the United States alone4

[22], and 83% of these hospitals utilize the Electronic Health Record (EHR)5

system [36]. EHRs have seen widespread adoption due to the stipulations of the6

Health Information Technology for Economic and Clinical Health (HITECH)7

Act of 2009 [1]. Over recent years, with the rise in EHR implementation in the8

hospitals of developed countries, application of machine and deep learning mod-9

els to patient data for the prediction of clinical outcomes such as causal effect10

inference and survival analysis has sparked widespread interest [100, 81, 28, 92].11

Owing to the availability of large, de-identified, public healthcare databases12

such as MIMIC (Medical Information Mart for Intensive Care II [55] and III13

[43]), mining patient data to accurately assess the severity of illness and de-14

termining diagnostic measures for augmenting healthcare policies has become15

a prominent area of research [44, 57, 16]. Healthcare data accessible via struc-16

tured EHRs is widely used in the existing Clinical Decision Support Systems17

(CDSSs) [10, 46, 67]. However, there is limited adoption of these structured18

EHRs in developing countries, thus leaving clinicians in such countries with no19

choice but to resort to manual consumption of available clinical notes for causal20

effect inference and decision-making [48].21

Clinical notes maintained by caregivers like nurses, record subjective assess-22

ments and crucial information concerning a patient’s state, which is mostly lost23

when transcribed into structured EHRs [29]. Mining and modeling such nursing24

notes for extracting rich patient data and utilizing this to predict clinical events25

and outcomes with machine learning models is a challenging process, owing to26

their rawness, high-dimensionality, sparsity, complex temporal and linguistic27

structure, and presence of rich medical jargon and abbreviations [29, 42]. The28

efficacy of using such raw clinical notes largely depends on the ability to extract29

and consolidate the information embedded in them effectively [91]. Further-30

more, there is often a need for multiple-label assignment (from a large set of31
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potential labels) to a patient record [3] due to the manifold nature of disease32

symptoms. Disease prediction (ICD-92 code group prediction [30]) and risk as-33

sessment via nursing notes can help in taking effective measures at the earliest34

signs of patient distress. Recognition of the onset of disease and the determina-35

tion of its risk using clinical nursing notes, followed by effective communication36

and response by interdisciplinary care team members could be both time- and37

cost-efficient [25], which can also lead to reduced hospital mortality rate [20].38

Early works [87, 31, 60, 34, 19] applied machine learning techniques to structure39

patient data in forecasting the length of stay in Intensive Care Units (ICUs) and40

mortality prediction. In recent years, practical progress in clinical machine and41

deep learning is benchmarked using MIMIC databases, for clinical prediction42

tasks such as in-hospital, short-term, and long-term mortality prediction, length43

of stay prediction, phenotyping, and ICD-9 code group prediction [35]. Johnson44

et al. [44] extracted a set of features from the MIMIC-III database for the45

prediction of ICU mortality and compared several existing works against Logistic46

Regression (LR) and gradient boosting models. More recently, Purushotham et47

al. [70] reported their performance on five clinical prediction tasks (on MIMIC-48

III database) using deep learning models and compared the performance with49

existing state-of-the-art methods and scoring systems.50

Although some state-of-the-art methods benchmark machine and deep learning51

models for several clinical prediction tasks on MIMIC, they have neglected the52

rich patient information available in the unstructured clinical nursing notes. In53

this paper, the applicability of vector space models (with term weighting [80]54

and Doc2Vec [53]), topic modeling (Hierarchical Dirichlet Process (HDP) [84]55

and Latent Dirichlet Allocation (LDA) [6] with Topic Coherence (TC) [77]) is56

studied to model this data. Our objective is to measure their effectiveness in vec-57

torizing and accurately modeling the semantic relationships between the textual58

features of unstructured nursing notes, for accurately predicting the ICD-9 code59

groups. A fuzzy similarity based data cleansing approach was designed to derive60

optimal data representations and eliminate redundant information in the nursing61

notes, thus improving the causal effect inference. We experimented with eight62

supervised multi-label classification approaches including K-Nearest Neighbors63

(KNN), Multi-Layer Perceptron (MLP), One-vs-Rest (OvR) with KNN, OvR64

with LR, OvR with Support Vector Machines (SVM), Random Forest (RF),65

Hard Voting Ensemble (HVE), and Stacking Ensemble (SE), to accurately pre-66

dict the ICD-9 code groups. Furthermore, we present an exhaustive study to67

evaluate a variety of data cleansing (using similarity) and modeling (using ma-68

chine learning) approaches across several standard evaluation metrics. The key69

2International Classification of Diseases, ninth revision.
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contributions of our work are summarized below:70

• Design of a fuzzy token-based similarity matching approach for unstruc-71

tured clinical data. This is used for deriving optimal data representations72

and eliminating anomalous or redundant data, due to which the cognitive73

burden is reduced, and an improvement in the clinical decision-making74

process is observed.75

• Leveraging vector space and topic modeling to extract the rich patient-76

specific information available in unstructured clinical nursing notes to pre-77

dict ICD-9 code groups accurately. Experimental results show that our78

proposed supervised learning models consistently outperformed the state-79

of-the-art models built on structured data.80

• Design of an approach that utilizes unstructured clinical text for the de-81

velopment of CDSSs, thus eliminating the dependency on the availability82

of structured EHRs. This can be crucial in countries where structured83

EHR adoption is not widespread.84

The rest of this paper is organized as follows: Section 2 provides an overview85

of the related work and reviews their advantages and limitations. Section 386

describes the MIMIC-III database and the preprocessing steps designed to gen-87

erate optimal representations from the clinical nursing notes. The experiments,88

evaluation, and results are discussed in great detail in Section 4. Finally, Sec-89

tion 5 concludes this paper with highlights on future research possibilities.90

2. Related Work91

An extensive body of research on using machine and deep learning models for92

clinical predictions is available in the existing literature. In this section, we93

discuss a few of these works to provide an overview of the existing models and94

state-of-the-art methods built on large healthcare datasets. In this discussion,95

we also highlight the importance of accurate ICD-9 code group prediction in96

modern healthcare systems.97

Buchman [9] compared statistical and connectionist models for the prediction of98

clinical trajectory, including resource and outcome utilization in surgical ICUs.99

However, much of this work formulated the task of identifying patients at risk as100

binary classification rather than regression. Other early works [11, 21] showed101

that machine learning models provide promising results in predicting medical102

risk, mortality, and in forecasting the length of stay in ICU. Early works [11, 12]103

also established that feed-forward neural networks almost always outperformed104

severity scores and logistic regression in mortality risk prediction among hos-105

pitalized patients. With recent advances in machine and deep learning, there106
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is widespread interest in applying these models to predict healthcare outcomes107

accurately [52, 63, 15]. Dabek and Caban [24] reported that several psychologi-108

cal conditions, including depression, post-traumatic stress disorder, and anxiety,109

could be improved using a neural network model. Che et al. [14] designed a110

scalable feed-forward deep learning framework for disease diagnosis that learns111

relevant clinical features based on the prior knowledge from medical ontologies.112

Some works that aimed at multi-label prediction of the diagnostic codes from113

clinical time series used feed-forward neural networks [52], temporal Convolu-114

tional Neural Networks (CNNs) [74], and Long Short Term Memory (LSTM)115

networks [17] to capture the co-morbidities in the hidden layers implicitly. Other116

recent works [56, 33, 69] modeled clinical time series and disease data by lever-117

aging the power of deep learning approaches. In 2016, novel deep learning118

architectures were proposed to model survival analysis as a time-to-event re-119

gression task [96, 72]. Luo [58] used sentence and segment LSTM models with120

word embeddings to classify the relations in the nursing notes. More recently,121

Rajkomar et al. [71] showed that novel neural network based architectures in-122

cluding LSTM perform well in the prediction of an extended length of stay,123

30-day unplanned re-admission, inpatient mortality, and diagnoses on general124

EHR data. Krishnan and Kamath [48] used extreme learning machine archi-125

tecture with Word2Vec embedding for mortality prediction using unstructured126

ECG text reports. Khin [45] developed a bi-directional LSTM with deep contex-127

tualized word embeddings and variational dropouts, and empirically validated128

the model’s superiority in terms of performance and convergence. These pre-129

vious works demonstrate the power and efficacy of machine and deep learning130

models in large healthcare applications.131

The availability of large public healthcare databases such as MIMIC-II and132

MIMIC-III has enabled healthcare researchers to benchmark the developed ma-133

chine and deep learning models in the effective prediction of clinical events and134

outcomes. In 2016, Pirracchio [66] presented that the super learner algorithm135

which is an ensemble of various machine learning models outperforms severity136

scores such as SOFA (Sepsis-related Organ Failure Assessment) [89], SAPS-II137

(Simplified Acute Physiology Score) [54], and APACHE-II (Acute Physiologic138

Assessment and Chronic Health Evaluation) [47] in ICU mortality prediction.139

The author’s work underscored the superiority of machine learning models over140

traditional prognostic scores but the author did not benchmark the obtained141

results against most recent machine and deep learning models.142

Recently, Johnson et al. [44] presented a case study on clinical mortality predic-143

tion task, highlighting the challenges in replicating results reported by related144

and recent publications on MIMIC-III. They reviewed 28 key existing works and145

compared the reported performance against LR and gradient boosting models146
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using an extracted set of features from MIMIC-III. Furthermore, the authors147

stressed the need for an improvement in the way of reporting the performance of148

clinical prediction tasks, to account for the substantial heterogeneity in the stud-149

ies and to ensure fairer comparison among approaches. Harutyunyan et al. [35]150

proposed a comprehensive deep learning approach using multitask Recurrent151

Neural Networks (RNNs) and empirically benchmarked their outcomes using152

four different clinical prediction tasks on the MIMIC-III database. Their work153

showed promising results for using deep learning models in clinical prediction.154

However, the authors only compared their obtained results against standard LR155

model and LSTM deep learning model [38], and excluded the comparison with156

machine learning models (specifically, super learner) or severity scoring systems.157

Purushotham et al. [70] presented an exhaustive set of benchmarking results on158

several clinical tasks including the length of stay, phenotyping, multiple versions159

of in-hospital mortality predictions, and ICD-9 code group predictions using the160

MIMIC-III database. They used LSTM-based deep architectures and compared161

their performance with traditional machine learning approaches and severity162

scoring systems on these tasks.163

In 2019, Krishnan and Kamath [50] proposed a novel hybrid metaheuristic ap-164

proach with genetic algorithm and extreme learning machine for patient-specific165

mortality prediction that outperformed various severity scoring systems and ma-166

chine learning models. However, their study uses large-scale structured lab event167

data for the clinical prediction task. In a parallel work [49], ICU mortality pre-168

diction task was performed using Word2Vec, Glove, and FastText embeddings169

of MIMIC-III nursing notes. They used the RF classifier, and their data pro-170

cessing and feature extraction are quite different from the approaches followed171

in this paper. Stone [83] discussed the opportunities of improving the triage172

accuracy in CDSSs, to effectively assist the medical personnel in drawing in-173

ferences in high-pressure situations with many distractions, where the patient174

history concerning the sustained trauma is limited. This work extends the ef-175

forts of the author by utilizing the patient-centric information to identify high-176

risk patients, thus aiding the underlying CDSS with increased triage accuracy,177

optimized patient outcomes, and minimized risk of clinical deterioration. To178

automate the process of ICD-9 coding, Zeng et al. [97] proposed a multi-scale179

deep neural transfer framework which employs the transfer of (Medical Subject180

Headings (MeSH) domain knowledge to improve the coding process. Huang et181

al. [40] employed state-of-the-art deep neural models, including CNN, LSTM,182

and Gated Recurrent Unit (GRU) to predict (top−10) ICD-9 code categories.183

However, these works utilize discharge summaries of the MIMIC-III database184

rather than the nursing notes—clinician’s notes are more rich, informative, and185

patient-centric. Moreover, modeling nursing notes can facilitate reliable billing,186

effective clinical decision support, and revising healthcare policies, while mod-187
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Table 1: Comparison of this work with the state-of-the-art works in the prediction of clinical outcome(s) using the MIMIC-III database.

Work
Data

Approach(es)
Modeling and classification Performance evaluation

Data
source(s)

Structure Volume Classification
type(s)

Feature modeling Classifier(s) Comparison Evaluation metric(s)

Harutyunyan
et al. [35]

Chart and
lab events
data

Structured 42, 276
ICU
stays

In-hospital mortality
prediction, decomposition
prediction, length of stay
prediction, and
phenotyping

Mortality: binary;
decomposition:
binary; length of
stay: multi-class;
phenotyping:
multi-label

17 selected clinical
variables (1)

Deep supervision,
multitask standard
LSTM, and multitask
channel-wise LSTM (3)

LR, standard LSTM, and
channel-wise LSTM (3)

AUROC, AUPRC,
Kappa, and mean
absolute difference (4)

Purushotham
et al. [70]

Lab, input,
output, and
chart events
data, and
prescriptions

Structured 35, 627
admis-
sions

In-hospital mortality
prediction, short- and
long-term mortality
prediction, length of stay
prediction, phenotyping,
and ICD-9 code group
prediction

Mortality: binary;
length of stay:
multi-class;
phenotyping:
multi-label; ICD-9
code group:
multi-label

Three feature sets of 17,
20, and 135 features
respectively (3)

MLP, multimodal deep
learner, and RNNs (2)

Scoring methods and
super learner (2)

AUPRC and AUROC (2)

Huang et al.
[40]

Discharge
summaries

Unstructured 59, 652
sum-
maries

Prediction of (top−10)
ICD-9 code categories
using state-of-the-art
deep learning models

Multi-label
classification via
deep learning
approaches

TF-IDF, Word2Vec, and
word sequencing with an
embedding matrix (3)

CNN, LSTM, and GRU
(3)

Prakash et al. [68], LR,
RF, and MLP (4)

ACC, micro F1, AUPRC,
precision@5, and
hamming loss (5)

Zeng et al.
[97]

Discharge
summaries

Unstructured 58, 929
sum-
maries

ICD-9 code assessment
via deep transfer learning
framework

Multi-label
classification via
deep neural
networks

Word embeddings (1) Transferring MeSH
domain knowledge with
sequential CNN (1)

Hierarchy-based SVM,
flat SVM, and segmented
CNN (3)

Micro-average precision,
micro-average recall, and
micro-average F-measure
(3)

This work Nursing
notes

Unstructured 223, 556
notes

Term weighting of
voluminous nursing notes
aggregated using the
fuzzy similarity of the
raw clinical text for
effective ICD-9 code
group assessment

Multi-label
classification via
machine learning
approaches

Term weighting, Doc2Vec
(500 and 1, 000), HDP
with BoW, HDP with
term weighting, and LDA
with TC (6)

KNN, MLP, KNN as
OvR, LR as OvR, SVM
as OvR, RF, HVE, and
SE (8)

Purushotham et al. [70],
Doc2Vec (500 and 1, 000),
HDP with BoW, HDP
with term weighting, and
LDA with TC (and their
respective variants of
naive aggregation) (12)

Accuracy, MCC,
AUROC, AUPRC, F1,
CE, and LRL (7)
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eling discharge summaries is only useful only in billing.188

Many hospitals in developed countries, including the United States, employ189

ICD-10 diagnostic coding systems, and hence there is a need for the translation190

of legacy ICD-9 codes into more specific ICD-10 concepts. Hernandez-Ibarburu191

et al. [37] studied the incompatibilities between ICD-9 and ICD-10 coding192

schemes. They presented a way of improving the translation of legacy data (that193

employs ICD-9 codes) with an extended version of ICD-10 codes generated using194

selected ICD-9 codes, in turn improving the mapping reliability. To achieve the195

mapping, they employed general equivalence mappings and integration of certain196

ICD-9 concepts within the hierarchical relations of ICD-10 codes. Angiolillo et197

al. [2] also studied the effect of coding terminology transitions on healthcare198

quality analysis. They reported that the legacy metrics across ICD generations199

could be bridged through equivalence mapping of ICD-9 concepts. Furthermore,200

they hypothesized that developing novel metric definitions could mitigate the201

complexity arising from equivalence mapping.202

Our work explores a much-neglected, but an abundant source of patient in-203

formation, i.e., unstructured clinical notes, and advances the state-of-the-art204

methods in the literature by using the rich information present in them, which205

is so often lost in the structured EHR generation process. By utilizing the206

patient-centric information to identify high-risk patients, this work enhances the207

underlying CDSS with optimized patient outcomes, increased triage accuracy,208

and minimized risk of clinical deterioration. Furthermore, our work presents209

an exhaustive comparative study to evaluate the performance of various data210

cleansing and modeling approaches across a variety of machine learning models211

in the multi-label prediction of ICD-9 code groups. Table 1 shows a detailed212

comparison of our proposed work with the state-of-the-art works in the area of213

prediction of clinical outcome(s) using the MIMIC-III database.214

2.1. Motivation215

In hospitals, especially in ICUs, a high patient-to-staff ratio and advanced med-216

ical equipment are utilized for continuous support and monitoring of critically217

ill patients. However, critical care patients are often susceptible to varied com-218

plications arising from advanced medical interventions, that can adversely af-219

fect their mortality and morbidity [85]. Common infections include central220

line-related bloodstream infection, ventilator-related pneumonia, and catheter-221

related urinary tract infection, that arise from the usage of invasive devices222

in ICUs. Surgical site infections resulting from prior procedures performed on223

patients and acute renal failure due to unrecognized drug interactions are also224

potential risks [85]. Ventilator support provided to critical care patients is often225
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related to several complications including barotrauma, short and long-term in-226

tubation, weaning errors, and gastrointestinal tract bleeding [94]. Additionally,227

ICU patients pose a risk of acid-base problems, nutritional complications, and228

psychological disturbances [94]. Furthermore, ICU survivors are known to suf-229

fer from neuro-psychiatric, quality of life, and long-term physical impairments230

[27]. The minute variations in the condition of ICU patients is recorded and231

monitored regularly by the trained nursing staff. Hence, nursing notes are very232

data-rich voluminous resources containing continuously documented subjective233

and objective assessments concerning a patient’s state. Effective modeling of234

such clinical text to aid in the early identification of high-risk patients is of ut-235

most importance, to provide prioritized care and prevent further complications.236

Due to practical constraints, the availability of resources including medical237

equipment and staff in ICUs is, more often than not, limited [32]. There is often238

a lack of accurate knowledge of the etiology of ICU complications, leading to the239

inability of accurate risk assessment and prevention of resulting complications;240

as a result of which, in most cases, adequate clinical care can only be provided241

after a complication develops. ICD-9 codes are designed to code diseases into242

categories, essential in epidemiological studies [73], cost-effectiveness analysis,243

and determining healthcare policies [18]. ICD-9 code group prediction is a pre-244

liminary step to ICD-9 code prediction, requiring high prediction performance.245

Since the patient encounters are grouped by diagnoses, ICD-9 code groups facil-246

itate research, along with tracking and billing, by reporting on severity, symp-247

toms, and use of resources across agencies. Furthermore, disease-specific staging248

systems could be beneficial towards capturing the severity, symptoms, and use249

of resources within a single code group. However, the existing state-of-the-art250

model [70] built on structured EHR data reported modest performance in ICD-251

9 code group prediction with an AUROC score of 0.7772 and AUPRC score252

of 0.6008. Thus, there is a need for the development of an effective modeling253

strategy to facilitate accurate ICD-9 code group prediction, in turn aiding in254

the accurate determination of ICD-9 codes.255

3. Materials and Methods256

In this section, we first discuss in brief, the statistics of the MIMIC-III database.257

The detailed overview of the Natural Language Processing (NLP) pipeline ar-258

chitecture used in the task of ICD-9 code group prediction is shown in Figure 3.259

Then, we elucidate on the preprocessing steps employed to extract features for260

ICD-9 code group prediction as a multi-label classification task.261
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MIMIC-III

database

Cohort selection

of nursing notes

Similarity-based

data cleansing
Preprocessing

Term weighting
Doc2Vec

embedding 500

Doc2Vec

embedding 1, 000

HDP with BoW
HDP with

term weighting

LDA with

topic coherence

ICD-9 group

prediction

Vector space modeling

Topic modeling

Figure 1: NLP pipeline used to predict the ICD-9 code group using unstructured clinical
nursing notes.

3.1. Dataset Description and Cohort Selection262

MIMIC-III is a freely accessible large database developed by the Massachusetts263

Institute of Technology Lab for Computational Physiology. It encompasses di-264

verse and comprehensive de-identified health-related data of over 40, 000 crit-265

ical care patients at the Beth Israel Deaconess Medical Center, Boston, Mas-266

sachusetts between June 2001 to October 2012. The database contains crucial267

patient information including vital sign measurements, demographics, labora-268

tory test results, medications, procedures, imaging reports, caregiver (nursing)269

notes, and in and out of hospital mortality.270

MIMIC-III database contains 2, 083, 180 note events, of which 223, 556 are nurs-271

ing notes of 7, 704 distinct ICU patients (subjects). Details of the nursing note272

text corpus are summarized in Table 2. At present, we considered two criteria273

to select the MIMIC-III subjects in the preparation of our datasets. Firstly,274

the subjects with age less than 15 (neonates) were identified using the age at275

the time of admission to the ICU. Based on the existing literature [44, 70],276

only adult subjects (age 15 or above) are considered for the study. Secondly,277

for each MIMIC-III subject, only their first admission to the hospital was con-278

sidered, and all later admissions were discarded. This was done to ensure the279

prediction with the earliest detected conditions (faster risk prediction), to avoid280

any information loss, and to ensure similar experimental settings as in exist-281

ing literature [44, 70, 48]. Figure 2c outlines the distribution of the number of282

code group mismatches across patients’ first admission to their later admissions.283

From Figure 2c it can be observed that the code groups in the later admissions284

of over 94% of the patient nursing notes are the same as those occurring in their285

first hospital admission. Owing to this, we decided to consider only the first286

admission of a MIMIC-III subject to a hospital, with no loss of information.287
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Table 2: Statistics of the clinical nursing note text corpus.

Parameter Total Average

Clinical nursing notes 223, 556 −
Sentences in the nursing notes 5, 244, 541 23.46

Words in the nursing notes 79, 988, 065 357.80

Unique words in the nursing notes 715, 821 3.20

3.2. Data Extraction288

The MIMIC-III (v1.4) database consists of 26 relational tables in total. For289

the purpose of this study, the following four tables were used to extract the290

selected cohort data: noteevents consisting of several kinds of reports and291

notes including ECG reports, radiology reports, nursing notes, and discharge292

summaries in an unstructured text form; admissions reports information con-293

cerning the patient’s admission to the hospital and is used for the time of the294

subject’s admission to the ICU; patients, containing the charted data for all295

critical patients, from which the patients’ date-of-birth is obtained for the com-296

putation of the age of patients; diagnoses icd , comprises the ICD-9 diagnoses297

of the patients. Most relevant healthcare features and data is present in these298

tables, and therefore these tables are selected to prepare datasets for the task299

of ICD-9 code group prediction. The statistics of the data extracted from the300

MIMIC database is shown in Figure 2. With the patient cohorts presented301

in Section 3.1, the dataset extracted from the selected tables contained nursing302

notes corresponding to 7, 638 patients with the median age of 66 years (Quartile303

Q1 = 52 years, Quartile Q3 = 78 years).304

3.3. Data Cleansing, Aggregation, and Preprocessing305

Due to various factors including outliers, noise, missing values, incorrect or du-306

plicate records, and others, the data extracted from the MIMIC-III database307

has erroneous entries. The following three issues with the extracted data were308

identified and handled accordingly. Firstly, the erroneous entries in nursing309

notes with the iserror attribute of the noteevents table set to one were iden-310

tified and removed. Secondly, some subjects that had duplicate records were311

identified, and the duplicate entries were deduplicated. The resulting data ob-312

tained by handling erroneous entries corresponded to 6, 532 MIMIC-III subjects.313

Finally, a MIMIC-III subject had multiple nursing notes with different ICD-9314

code groups, which were merged or purged using a fuzzy token-based similarity315

approach.316
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Figure 2: Statistics of the data extracted from the MIMIC-III database.
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3.3.1. Fuzzy Token-based Similarity Merging317

Multiple nursing notes of a MIMIC-III subject have to be merged to enable318

multi-label ICD-9 code group classification. Figure 3 shows the heavy-tailed319

distribution of nursing notes across various patients. It can also be observed320

that the extracted MIMIC-III patient cohort has an average of 176.49 nurs-321

ing notes per patient, with 4, 183 patients having more than fifty nursing notes322

composed of over 17, 890 words on an average. Such voluminous nursing notes323

often include many similar terms which could significantly affect the vector rep-324

resentations. To handle the voluminosity and near-duplicate nursing notes of a325

patient, Monge-Elkan (ME) [61], a token-based fuzzy similarity scoring scheme326

is integrated with Jaro [41] internal scoring scheme and used as a decision-327

making mechanism. ME similarity is used to handle clinical abbreviations,328

alternate names, and medical jargon. Jaro similarity is used as an internal scor-329

ing scheme to handle typographical errors and to obtain a normalized similarity330

score between 0 and 1. Given two nursing notes ηi and ηj with |ηi| and |ηj |331

tokens (C(i)k s and C(j)l s) respectively, their ME similarity score with Jaro is,332

MEJaro(ηi, ηj) =
1

|ηi|

|ηi|∑
k=1

max
{

Jaro(C(i)k , C(j)l )
}|ηj |
l=1

(1)

1 722 1,444 2,166 2,888 3,610 4,332 5,054 5,776

2
16

32

64

128

168

Number of nursing notes

N
u

m
b

er
o
f

p
a
ti

en
ts

Figure 3: The distribution of nursing notes across various MIMIC-III subjects (red dashed
line exhibits the distribution at 50 nursing notes).
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where the Jaro similarity score of two given clinical terms (tokens) Ci of length333

|Ci| and Cj of length |Cj | with m matching characters and t transpositions is,334

Jaro(Ci, Cj) =

0, if m = 0
1
3

(
m
|Ci| + m

|Cj | + 2m−t
2m

)
, otherwise

(2)

The nursing notes of a patient are processed in the order of oldest to the most335

recent. Based on the predetermined similarity threshold (θ) ranging between336

0 and 1, a pair of nursing notes (η
(k)
i , η

(k)
j ) corresponding to a patient (P(k))337

are merged only if MEJaro(η
(k)
i , η

(k)
j ) is less than θ, else η

(k)
j is retained and338

η
(k)
i is purged, thus maintaining only the latest of the two nursing notes. Note339

that, similarity merging and purging applies only to nursing notes and not340

to the ICD-9 code groups. Corresponding ICD-9 codes across various nursing341

notes of a patient are merged to enable multi-label classification. The resultant342

nursing note for a patient P(k) after merging is hereafter referred to as the343

aggregate nursing note of that patient. For the purpose of this research, we have344

empirically determined the fuzzy-similarity θ to be 0.825 using grid search.345

Consider two sample nursing notes (η
(p)
i and η

(p)
j ) of a patient (p) extracted from346

the MIMIC-III database, recorded at times T (shown in Figure 4a) and T ′ > T347

(shown in Figure 4b) respectively. It can be observed that both the recorded348

nursing notes are quite similar—the nursing note recorded at time T ′ records all349

the details in nursing note η
(p)
i , along with additional ‘response’ concerning the350

patient’s state. To handle the voluminosity of the nursing notes and delete the351

near-duplicate nursing notes, we compute the ME similarity (with internal Jaro352

similarity scoring) score using Equation 1. The nursing notes shown in Figure 4353

have an ME similarity score of 0.85, which is higher than the preset threshold354

Cancer (Malignant Neoplasm), Hepatic (Liver)

Assessment: Patient is more lethargic yesterday &

today than he was on Fri ([**2-10**] days ago).

Action: He was made DNR/CMO tonight, per agreement of family.

Assessment: Patient had acute SOB, midsternal chest pain,

feeling that he was going to die @ [**2016**] when he rolled

in bed onto bedpan & had BM. HR increased to low 70s SR.

BP increased to 149/systolic. Desatted to 85%.

Action: Given 100% high flow neb, 0.5 NTP & 0.25mg IV morph-

ine. EKG done during SOB.

Response: Pain & SOB relieved. No changes on EKG.

Plan: Now that patient is CMO, medicate w/morphine before

rolling patient in bed. Continue to medicate w/Lopressor to

prevent ACS as well as NTP or SL NTG, morphine & O2

during episodes.

(a) A sample nursing note (η
(p)
i ) of a patient (p) recorded at time T .

Cancer (Malignant Neoplasm), Hepatic (Liver)

Assessment: Patient is more lethargic yesterday &

today than he was on Fri ([**2-10**] days ago).

Action: He was made DNR/CMO tonight, per agreement of family.

Response: Patient and family comfortable w/this plan.

Both concerned about treatment for episodes of respiratory

distress/flash pulmonary edema.

Assessment: Patient had acute SOB, midsternal chest pain,

feeling that he was going to die @ [**2016**] when he rolled

in bed onto bedpan & had BM. HR increased to low 70s SR.

BP increased to 149/systolic. Desatted to 85%.

Action: Given 100% high flow neb, 0.5 NTP & 0.25mg IV morph-

ine. EKG done during SOB.

Response: Pain & SOB relieved. No changes on EKG.

Plan: Now that patient is CMO, medicate w/morphine before

rolling patient in bed. Continue to medicate w/Lopressor to

prevent ACS as well as NTP or SL NTG, morphine & O2

during episodes.

(b) A sample nursing note (η
(p)
j ) of a patient (p) recorded at time T ′ (> T ).

Figure 4: Two sample de-identified nursing notes from the MIMIC-III database. The two
nursing notes are quite similar, while the only new content is the updated response (indicated
as red italicized text).
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of 0.825. Thus, note η
(p)
j is retained, and note η

(p)
i is purged.355

3.3.2. Preprocessing356

The next phase in the NLP pipeline is to preprocess the nursing notes to achieve357

data (text) normalization. Transformation of text into a canonical form allows358

for the separation of concerns and helps maintain consistency. Preprocessing359

essentially includes tokenization, stopword removal, and stemming/lemmatiza-360

tion. First, multiple spaces, special characters, and punctuation marks are re-361

moved. During tokenization, the clinical notes’ text is split into several smaller362

tokens (words). Stopwords from the generated tokens are removed using the363

NLTK English stopword corpus [5]. Furthermore, character case folding is per-364

formed, and references to images (file names such as ‘scanImage.png ’) are re-365

moved. It is to be noted that, token-length based token removal was not per-366

formed to avoid the loss of important medical information (such as ‘CT ’ in367

‘CT Scan’). Finally, stemming was performed for suffix stripping, followed by368

lemmatization to convert the stripped tokens to their base forms. To eliminate369

overfitting and lower the computational complexity, the tokens appearing in less370

than ten nursing notes were removed before any further processing.371

3.4. Feature Extraction372

Let P be the set of all patients. A patient (P(k) ∈ P) has a sequence of nursing373

notes, S(k) = {η(k)i }N
(k)

i=1 , with N (k) total nursing notes (η
(k)
i s).374

Each nursing note constitutes a variable length of tokens from a sizeable vocab-

ulary V, and each patient has a variable number of such notes, thus making S(k)

very complex. Thus, the transformation (T ) of unstructured clinical text (S(k))
into an easier-to-use form (such as fixed length vector of tokens) is critically

important. Thus, an effective mapping from the S space to R is attempted.

T : S(k) −→ Rd (3)

The patient information is transformed into a machine processable form, P(k) =375

T (S(k)), P(k) ∈ Rd. To tackle the curse of dimensionality [4], usually d � |V|.376

Although traditional dictionary and rule-based NLP transformations show good377

performance in certain applications, they are not automated and need manual378

effort to adapt them in various domains [48]. To improve the performance and379

effectiveness of the classification models, optimized vector representations of the380

underlying corpus is mandatory. To enable an exhaustive comparative study,381

we use six data modeling approaches as described below.382
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3.4.1. Vector Space Modeling of Aggregated Clinical Notes383

A prominent transformation of the Bag of Words (BoW) that weighs each token

in an unsupervised way, is the term weighting scheme. It is a numerical statistic

that captures both the importance and specificity of a term in the given vocab-

ulary. The weight (W
(i)
m ) of a term w

(i)
m (of total |w(i)| terms) in a nursing note

ηi (of total N nursing notes) occurring f
(i)
m times is given by,

W (i)
m =


(

1 + log2 f
(i)
m

)(
log2

N
|w(i)|

)
, if f

(i)
m > 0

0, otherwise
(4)

The weight of every term in a patient’s aggregate nursing note (P(k)) is com-384

puted to obtain a vector V(k) ∈ R|V|. Now, the patient information in machine385

processable form, P(k)
term weighting = V(k).386

Due to the one-hot encoding of every word in BoW models, the resulting mod-387

els suffer from high dimensionality and sparsity. Moreover, BoW models do388

not capture the intuition of semantically similar nursing notes having similar389

representations. For example, two terms with a close semantic relationship (as390

in ‘Cancer ’ and ‘Melanoma’) could be mapped to two entries with large dis-391

tance. Vector space embeddings cope with these shortcomings by efficiently392

learning the term representations in a data-driven manner. An influential work393

in this domain is the Doc2Vec or Paragraph Vector (PV) network. Doc2Vec394

aims at numerically representing variable length documents as fixed length low395

dimensional document embeddings (vectors). Doc2Vec is essentially a neural396

network with one shallow hidden layer that learns the distributed representa-397

tions, to provide a content-related measurement. It incorporates semantic tex-398

tual features obtained from the nursing notes text corpus. The PV Distributed399

Memory (PV-DM) variant of Doc2Vec was chosen over PV Distributed BoW400

(PV-DBoW) due to its ability to preserve the word order in the nursing notes401

and its comparatively superior performance [53]. The implementations in the402

Python Scikit-learn [65] and Gensim packages [75] were used to extract term403

weighting and Doc2Vec style textual features on the transcribed clinical words404

(extracted from aggregate nursing notes). For an exhaustive analysis, Doc2Vec405

dimension sizes of 500 (trained for 25 epochs) and 1, 000 (trained for 50 epochs)406

were used.407

3.4.2. Topic Modeling of Aggregated Clinical Notes408

Topic modeling can be used for finding a set of terms (topics) from a collection409

of documents that best represents the documents in the corpus. Traditional410

models of information retrieval such as Latent Semantic Analysis (LSA) [93]411
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Figure 5: Correlations between top ten terms’ membership in d = 5 topic modeling clusters obtained using aggregated nursing notes (using fuzzy
similarity θ = 0.825).
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use a low approximation of BoW/term weight matrix by calculating the singular412

value decomposition of the matrix. Such models usually deal with complex413

matrix computations. A variant of the LSA is the probabilistic LSA [39] that414

combines co-existing and implicit topic data into probabilistic statistics to find415

potential relationships among terms.416

A popular cluster analysis approach, LDA is a generative topic model based

on the Bayesian framework of a three-layer structure (documents, topics, and

terms). LDA generates a soft probabilistic and flat clustering of terms into

topics and documents into topics. LDA posits that each (aggregate) nursing

note η
(k)
i of a patient P(k) and each term belongs to a set of d (� |V|) clusters

(topics) T, with some probability ρ. Thus, each nursing note is transformed as,

η
(k)
i −→ T

(k)
i ∈

[
ρ
(k)
ij

]d
j=1

where

d∑
j=1

ρ
(k)
ij = 1 and ρ

(k)
ij ≥ 0 ∀j (5)

Similar to other clustering approaches, there is no simple way to determine417

the correct number of d LDA clusters. To cope with this issue, more complex418

models such as Hierarchical Bayesian Non-parametric (HDP) which automati-419

cally determine the number of clusters through posterior inference can be used.420

HDP is a hierarchical Bayesian non-parametric model that can model mixed-421

membership data with potentially infinite terms, in an unsupervised way. In422

LDA, only the mixture of topics is drawn from the Dirichlet distribution, while423

in HDP, a Dirichlet process is used to capture the uncertainty in the number of424

terms. For the ease of interpretation, the top ten terms’ membership with five425

HDP clusters is shown in Figure 5a.426

Probabilistic models are commonly evaluated by measuring the log-likelihood of427

unseen documents. As an alternative to HDP, the methods of average similarity,428

perplexity [90], and TC between topics can also be used to derive the optimal429

number of topics. Perplexity measures the quality and generalization ability of430

the model. However, perplexity may not always correlate with human judgment431

and some times the two are anti-correlated [13]. TC is a way to evaluate topic432

models with a much greater guarantee of human interpretability. In this paper,433

we adopt LDA with TC as it accounts for the semantic similarity between high434

scoring terms. Cv, a variant of coherence measurement is used in this study, as435

it accounts for high correlation with all the available human ranking data [77].436

First, Cv segments each of the topic’s top K tokens into token pairs. Then,437

it incorporates a Boolean sliding window approach in which for every window438

of size s sliding at one token per step, a virtual document is created. Token439

or token pair probabilities are computed from the total count of virtual docu-440

ments. To some degree, the sliding window approach captures the proximity441
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between tokens. Then, a confirmation (similarity) measure is used to quantify442

how strongly a token set supports another token set. Normalized point-wise mu-443

tual information [7] is used in this paper as a confirmation measure due to its444

high correlation with human interpretability. All the confirmation measures are445

averaged to obtain the final coherence score. The higher the coherence value,446

the stronger is the model’s human interpretability and generalization ability.447

For the ease of interpretation, the top ten terms’ membership with five LDA448

(with TC) clusters is shown in Figure 5b.449

The implementations available in the Python Gensim package were used to450

implement LDA with TC and HDP models. To provide exhaustive analysis,451

HDP with truncation level set to 150 was modeled with both BoW and term452

weighting. Alternatively, LDA (set to 100 topics) with TC was modeled with453

BoW representations. Furthermore, the number of LDA topics was determined454

by comparing the TC scores of several LDA models obtained by varying the455

number of LDA topics from 2 to 500 in the increments of 100.456

4. ICD-9 Code Group Prediction457

ICD-9 codes are a taxonomy of diagnostic codes that are used by doctors, pub-458

lic health agencies, and health insurance companies across the world to classify459

diseases and a wide variety of infections, disorders, symptoms, causes of injury,460

and others. Owing to the high granularity of ICD-9 codes, researchers suggested461

differentiating between category-level (group) predictions and full-code predic-462

tions [51]. Each ICD-9 code group includes a set of similar diseases, and almost463

every health condition can be represented with a unique ICD-9 code group. In464

this study, we focus on ICD-9 code group predictions as a multi-label classifica-465

tion problem, with each patient’s nursing note mapped to more than one group.466

All the ICD-9 codes assigned to a patient’s admission are grouped into 19 di-467

agnosis classes3. In this study, the Ref and V codes are classified into the same468

code group to lower the computational cost of training. Table 3 presents the469

statistics of ICD-9 code group labels extracted from MIMIC-III nursing notes.470

4.1. ICD-9 Disease Code Group Prediction471

In this section, we discuss the prediction algorithms employed to achieve the472

task of ICD-9 code group multi-label classification. We experimented with eight473

different prediction models conforming to various algorithmic classes including474

3http://tdrdata.com/ipd/ipd_SearchForICD9CodesAndDescriptions.aspx.
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Table 3: Statistics of the ICD-9 code group labels extracted from MIMIC-III nursing notes.

ICD-9
group

ICD-9 code
range

Diagnosis #Patients
(out of 6,532)

1 001− 139 Parasitic and infectious diseases 1, 856

2 140− 239 Neoplasms 1, 319

3 240− 279 Endocrine, immunity, metabolic, and
nutritional

4, 785

4 280− 289 Blood-forming organs and blood 2, 705

5 290− 319 Mental disorders 2, 614

6 320− 389 Sense organs and nervous system 2, 611

7 390− 459 Circulatory system 5, 393

8 460− 519 Respiratory system 3, 301

9 520− 579 Digestive system 2, 903

10 580− 629 Genitourinary system 2, 912

11 630− 677 Childbirth, pregnancy, and puerperium 31

12 680− 709 Subcutaneous tissue and skin 781

13 710− 739 Connective tissue and musculoskeletal
system

1, 637

14 740− 759 Congenital anomalies 269

15 780− 789 Symptoms 2, 432

16 790− 796 Nonspecific abnormal findings 647

17 797− 799 Unknown or ill-defined causes of
mortality and morbidity

299

18 800− 999 Poisoning and injury 2, 978

19 Ref and V
codes

Reference codes and supplemental V
codes

4, 853

algorithm adaptation based, problem transformation based, and ensemble mod-475

els. The implementations available in the Python Scikit-learn package were used476

to make predictions.477

4.1.1. Algorithm Adaptation Classification Models478

The models in this class adapt existing machine learning algorithms for the task

of multi-label classification. We used two models including K-Nearest Neighbors

(KNN) and Multi-Layer Perceptron (MLP), for the prediction of ICD-9 code

groups. KNN [99] is a non-parametric instance-based (non-generalizing) lazy

learner used in regression and classification tasks. In KNN classification, the

output class membership is determined by the majority vote of its K closest

neighbors. In the sense of multi-label classification, KNN first identifies the K
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closest neighbors and then, based on the statistical inferences gained from the

neighboring class label sets, maximum a posteriori principle is used to determine

the class label set of an unseen instance. Let S = {η(i)}|P|i=1 be the set of

all aggregate notes of |P| patients, and Y denote the set of all possible class

labels. Each nursing note η(i) is mapped to a class label set Y(i) ⊆ Y. For an

unseen instance η(m), let K(m) denote the K closest neighbors. Membership

counting function for cth class label (c ∈ Y), based on K-closest neighbors can

be computed as,

Countm(c) =

K(m)∑
n=1

Y(n)(c), where Y(n)(c) =

{
1, if c ∈ Y(n)

0, otherwise
(6)

Let E(Countm(c)) denote the event (E(·)) that Countm(c) neighbors of η(m)

belong to the cth class. Then, using the maximum a posteriori principle, we

obtain the membership of a class label (c) as,

Y(m)(c) = arg max
s∈{0,1}

P(H(c)
s |E(Countm(c))), H(c)

s =

{
E(c ∈ Y(m)), if s = 1

E(c 6∈ Y(m)), otherwise

(7)

Thus, finding all class membership values will help in obtaining the multi-label479

classification of an unseen nursing note. In our work, 15 closest neighbors480

were considered (empirically determined using grid search), where closeness is481

weighted as the inverse of the distance between instances.482

MLP (vanilla neural network) [98] is a feed-forward neural artificial network

with an input layer, one or more hidden layers, and one prediction layer at the

top, for classification. The first layer takes η(m) with p′ clinical terms as the

input and uses the output of each layer as the input to the following layer. The

transformation from a layer l with the output O(l) to the following layer with

weights W (l+1) and biases b(l+1) can be represented as,

O(l) −→W (l+1)O(l) + b(l+1) −→ g(W (l+1)O(l) + b(l+1)) −→ O(l+1) (8)

where g is a non-linear activation function such as a tanh, logistic sigmoid, or483

ReLU [62]. In training, to update the weights and biases, MLP uses a supervised484

approach called Backpropagation (BP) [78]. BP is used to calculate the gradient485

of the loss function to update weights, which aids the MLP to learn the internal486

representations, allowing it to learn any arbitrary mappings within the network.487

In the case of multi-label classification, while the forward pass remains the488

same, the classical BP algorithm uses a global error function that addresses489

the dependencies between the class labels. Figure 6 shows a one hidden layer490
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feed-forward MLP network for multi-label classification. In this study, we use491

vanilla neural networks with one hidden layer of 75 nodes and a ReLU activation492

function, empirically determined using grid search.493

...
...

...

b(1) (bias)

C1

C2

Cp

b(2) (bias)

H1

H2

H3

Hq

Y1

Y2

Yr

Input layer Hidden layer Prediction layer

Figure 6: Multi-label classification neural network model with p input clinical terms (Cis), a
hidden layer with q nodes (His), and r possible ICD-9 code groups (Yis).

4.1.2. Problem Transformation Classification Models494

These classification models aim at transforming an existing multi-label task

into one or more single-label regression or classification tasks. Three classifiers

including KNN, LR, and SVM were utilized as OvR classifiers in the prediction

of ICD-9 diagnosis code groups. LR or maximum-entropy classification [23] is a

discriminative model that models the probabilities of possible outcomes using a

logistic function. The model posits that,

P(Y(i)|ρ(i)) = ρ(i)
Y(i)

(1− ρ(i)
1−Y(i)

), where ρ(i) =
1

1 + exp(−xiβ)
(9)

where Y(i) is a single outcome variable corresponding to xi and following a495

Bernoulli probability distribution, that draws a value of 1 with ρi probability.496

The unknown parameter β = (β0, β1
′)′ is an (m × 1) vector, where β0 is the497

scalar intercept (constant term), and β1 is an (m− 1× 1) vector with elements498

corresponding to m−1 explanatory variables of xi. To achieve fast convergence499

to the optimal solution, we used the stochastic average gradient solver.500

SVM [88] is also a discriminative approach that classifies by constructing hy-

perplane(s) in a high-dimensional space. For a given set of linear separable
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training instances, SVM finds a linear rule that maximizes (optimizes) the ge-

ometric margin (street width). In practice, most of the training sets are not

usually linearly separable. Now, a trade-off between minimizing prediction er-

ror and maximizing the geometric margin must be incorporated. Kernels such

as tanh, sigmoid, Radial Basis Function (RBF) [64], and others are generally

used to transform from the linearly inseparable space to a higher dimensional

space where the points could be separated. The RBF kernel on two samples η(i)

and η(j) can be defined as,

KRBF(η(i), η(j)) = exp(−γ‖η(i) − η(j)‖
2
) (10)

where γ measures the spread of the kernel. The RBF kernel defines a space501

that is larger than linear or polynomial kernels and has properties such as being502

stationary, isotropic, and infinitely smooth. Thus, in this analysis, we used SVM503

with an RBF kernel with γ set to 1/#features.504

OvR [76] prediction strategy essentially transforms the multi-label classification505

problem into multiple binary relevance tasks. OvR trains a classifier for each506

class (c ∈ Y), with the samples (aggregate nursing notes, (η(i), Y(i))) of that507

class as positive (c ∈ Y(i)) and the remaining samples as negative (c 6∈ Y(i)). The508

base classifiers produce a real-valued confidence score for the prediction decision.509

Then, for an unseen instance, the combined model predicts all the class labels510

for which the corresponding base classifiers predicted a positive result.511

4.1.3. Ensemble Classification Models512

Ensemble learning approaches help in the improvement of the prediction per-

formance by combining several learning models. Three ensemble prediction

approaches including Random Forest (RF), Hard-voting Ensemble (HVE), and

Stacking Ensemble (SE) were employed in the classification of ICD-9 diagnostic

code groups. RF or decision tree ensembles [8] predict by constructing multiple

Classification And Regression Trees (CARTs) during training and predict the

output class as a function of the outputs of individual trees for the test data. At

each node of the CART, a random subset of input parameters (usually of size√
#features) are chosen, and the best feature is selected based on the splitting

condition. The splitting conditions are based on the threshold which is deter-

mined by optimizing a cost function (such as information gain or Gini index).

In multi-label classification, multiple labels are present in the tree leaves, and

the entropy is calculated as the sum of entropies of each label,

Entropy = −
∑
c∈Y

ρc log2(ρc) + (1− ρc) log2(1− ρc) (11)
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where ρc is the probability of class c (∈ the set of possible labels (Y)). The513

predictions of multiple base CARTs are combined using a simple voting scheme514

(such as probability distribution or majority vote). In this research, we use RF515

with 100 CARTs of maximum depth 2, and bagging was used to obtain diversity516

among the base CARTs.517

HVE aggregates the predictions of multiple diverse classifiers using a majority

rule. Given a set of diverse classifiers (Nis) with prediction sets Yis, where each

Yi a subset of Y (set of all class labels), then the presence of a class (c) in an

unseen instance (η(m)) can be estimated as,

Y(m)(c) =

1, if
N∑
i=1

Y
(m)
i (c) >

⌈
N
2

⌉
0, otherwise

(12)

Thus, using the majority voting principle, the possible class label set for the518

unseen instance can be predicted. Many variations on the classifiers used in519

HVE were tried, starting with KNN, MLP, LR, LR as OvR, SVM as OvR,520

and KNN as OvR. After much experimentation, only MLP, LR as OvR, and521

SVM as OvR were used, due to their superior performance. Additionally, the522

plurality voting scheme was also tested; however, the majority voting scheme523

outperformed the plurality voting scheme. In this paper, we only present the524

performance recorded using the majority voting scheme.525

SE [95] also combines discrete learning algorithms using a meta-classifier. In the526

first phase, all the base classifiers (Nis) are applied to the training data which527

generate the predictions (Yis). Then, in the second phase, a meta-level dataset528

is created by replacing every trained record (η(k)) with the predictions for that529

record (Y
(k)
i )

N

i=1. Then, another learning algorithm (L) is used to classify the530

meta-level dataset. On an unseen testing instance ηm, the predicted class set531

is L(Y
(m)
i )Ni=1. In this study, MLP, LR as OvR, and SVM as OvR are used as532

first-level classifiers, and MLP is used as the second-level classifier. In contrast533

to voting, SE learns at the meta-level, when combining multiple classifiers.534

4.2. Experimental Validation and Discussion535

To validate the proposed approach, we performed extensive experiments over536

the nursing notes data obtained from the MIMIC-III database. The primary537

challenge is the multi-label classification, where a set of ICD-9 code groups are538

predicted for a given nursing note. Let Y denote the set of all possible labels,539

Ytrue denote the ground truth class labels, Ypred denote the predicted class540

labels, and Yscore denote the target scores which are either confidence values or541
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probability estimates of the true class or binary decisions (Ypred). In this work,542

binary predictions were used as the target scores, where, pairwise comparison543

of predicted values and true values is performed. Seven standard evaluation544

metrics were used to assess the performance of each prediction algorithm with545

reference to each data modeling approach.546

Accuracy (ACC): This metric computes the average number of correct predic-

tions over given samples. In the case of multi-label classification, the function

uses a pairwise label matching to estimate the accuracy, as per Equation 13.

ACC(Ytrue,Ypred) =
1

s

s∑
i=1

I(Ytruei,Ypredi) (13)

where s is the total number of samples, and I(x, y) is the indicator function and547

returns one only when x = y.548

Area Under the ROC Curve (AUROC): The ROC curve is a graphical plot cre-549

ated by plotting sensitivity against the fall-out (1 − specificity). The AUROC550

metric [26] indicates the probability that a prediction model will rank a ran-551

domly chosen true instance higher than a randomly chosen false instance. A552

greater AUROC score indicates greater performance.553

Area Under the Precision-Recall Curve (AUPRC): The PR curve is a graphical554

plot created by plotting precision against the recall. When dealing with highly555

skewed datasets, the AUPRC [26] metric provides a more informative insight556

into the performance of the prediction algorithm. Higher the AUPRC, the better557

is the model’s performance.558

MCC Score: The Matthews correlation coefficient (φ-coefficient) [59] presents559

the essence of the correlation between the observed and the predicted binary560

classifications. It is a balanced score that takes into account the true/false561

positives and negatives. The higher the MCC score, the better the prediction562

is (Range = [−1, 1]).563

F1 Score: Balanced F-measure or F1-score [82] is an indicator of the prediction

accuracy, interpreted as a weighted average of precision and recall. F1 score

reaches a perfect recall and precision at 1 (Range = [0, 1]) and is computed as,

Fβ = (1 + β2)
Recall · Precision

Recall + β2 · Precision
, where β = 1 (14)
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Coverage Error (CE): This metric [86] evaluates the average number of labels

to be included in order to cover all the true labels of the instance. It can be

related to precision at the level of perfect recall, and the lesser the value of CE,

the better the performance. CE is calculated as,

CE(Ytrue,Yscore) =
1

s

s∑
i=1

max
j:Ytrueij=1

rankij (15)

where s is the total number of samples, and rankij = |{k : Yscoreik ≥ Ytrueij}|564

(| · | is the cardinality of the set).565

Label Ranking Loss (LRL): LRL [86] computes the average number of label pairs

that are incorrectly ordered. The lower the LRL, the better the performance

(Min = 0). LRL can be computed as,

LRL(Ytrue,Yscore) =
1

s

s∑
i=1

|(j, k) : Ytrueij = 1,Ytrueik = 0,Yscoreik
≥ Yscoreij |

‖Ytruei‖0(|Y− ‖Ytruei‖0|)
(16)

where s is the total number of samples, | · | denotes the cardinality of the set,566

and ‖ · ‖0 denotes the l0 norm.567

4.3. Experimental Results568

In this section, we report an exhaustive comparative study of the performance569

of various data and modeling approaches on the nursing notes of the MIMIC-III570

database. For the prediction task of ICD-9 code group classification, 10-fold571

cross-validation was performed. Furthermore, the mean and standard errors572

(of the mean) of the performance scores are presented. Table 4 shows the573

performance of all data modeling approaches and all prediction models using574
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Figure 7: Comparative evaluation of the best performing models (with and without fuzzy
similarity modeling) and the state-of-the-art model.
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Table 4: ICD-9 code group prediction using nursing notes of MIMIC-III (using fuzzy similarity
with θ = 0.825).

Data model Classifier
Performance scores

ACC AUROC AUPRC MCC F1 CE LRL

TAGS
(6, 532 × 14, 650)

KNN 0.7857± 0.0011 0.7681± 0.0010 0.5904± 0.0016 0.5286± 0.0019 0.6688± 0.0017 18.0936± 0.0501 0.4181± 0.0018

MLP 0.7947± 0.0009 0.7677± 0.0013 0.5987± 0.0018 0.5366± 0.0020 0.6664± 0.0018 18.2327± 0.0574 0.4226± 0.0024

KNN as OvR 0.7725± 0.0018 0.7645± 0.0011 0.5738± 0.0021 0.5108± 0.0024 0.6619± 0.0017 17.9385± 0.0791 0.4204± 0.0020

LR as OvR 0.8239± 0.0011 0.7868± 0.0011 0.6476± 0.0011 0.5953± 0.0018 0.6981± 0.0016 18.2849± 0.0643 0.3978± 0.0021

SVM as OvR 0.7413± 0.0014 0.6801± 0.0011 0.5249± 0.0014 0.4007± 0.0024 0.5207± 0.0019 19.5542± 0.0206 0.5880± 0.0018

RF 0.7630± 0.0012 0.6926± 0.0009 0.5486± 0.0014 0.4388± 0.0022 0.5450± 0.0016 19.5678± 0.0238 0.5728± 0.0014

HVE 0.8171± 0.0010 0.7781± 0.0007 0.6367± 0.0007 0.5786± 0.0007 0.6837± 0.0009 18.5659± 0.0614 0.4132± 0.0014

SE 0.7972± 0.0009 0.7698± 0.0015 0.6027± 0.0021 0.5421± 0.0016 0.6701± 0.0017 18.2673± 0.0630 0.4195± 0.0029

Doc2Vec 500
(6, 532 × 500)

KNN 0.7399± 0.0020 0.6628± 0.0027 0.5247± 0.0021 0.3949± 0.0041 0.4802± 0.0055 19.5644± 0.0278 0.6363± 0.0058

MLP 0.7368± 0.0009 0.7102± 0.0012 0.5240± 0.0020 0.4150± 0.0023 0.5911± 0.0021 18.8039± 0.0450 0.5078± 0.0021

KNN as OvR 0.7377± 0.0016 0.6674± 0.0024 0.5206± 0.0015 0.3888± 0.0030 0.4902± 0.0052 19.5144± 0.0269 0.6197± 0.0055

LR as OvR 0.7950± 0.0013 0.7579± 0.0011 0.5970± 0.0018 0.5262± 0.0023 0.6607± 0.0017 18.6491± 0.0375 0.4400± 0.0019

SVM as OvR 0.8059± 0.0013 0.7666± 0.0010 0.6184± 0.0012 0.5514± 0.0022 0.6743± 0.0015 18.7379± 0.0462 0.4273± 0.0017

RF 0.7484± 0.0013 0.6787± 0.0010 0.5356± 0.0010 0.4142± 0.0021 0.5190± 0.0018 19.6208± 0.0225 0.5991± 0.0019

HVE 0.8013± 0.0014 0.7636± 0.0011 0.6084± 0.0016 0.5407± 0.0024 0.6691± 0.0012 18.6652± 0.0149 0.4312± 0.0015

SE 0.8047± 0.0014 0.7652± 0.0011 0.6164± 0.0008 0.5482± 0.0023 0.6715± 0.0014 18.7367± 0.0483 0.4296± 0.0017

Doc2Vec 1, 000
(6, 532 × 1, 000)

KNN 0.7322± 0.0018 0.6543± 0.0030 0.5104± 0.0016 0.3741± 0.0036 0.4650± 0.0062 19.6614± 0.0478 0.6494± 0.0072

MLP 0.7458± 0.0011 0.7170± 0.0013 0.5307± 0.0011 0.4291± 0.0025 0.5989± 0.0015 18.8467± 0.0374 0.4988± 0.0021

KNN as OvR 0.7376± 0.0017 0.6712± 0.0029 0.5189± 0.0013 0.3883± 0.0035 0.5020± 0.0057 19.5014± 0.0415 0.6074± 0.0068

LR as OvR 0.7735± 0.0015 0.7414± 0.0017 0.5667± 0.0015 0.4845± 0.0030 0.6374± 0.0019 18.7376± 0.0526 0.4623± 0.0029

SVM as OvR 0.8067± 0.0012 0.7693± 0.0013 0.6187± 0.0012 0.5542± 0.0021 0.6762± 0.0016 18.6286± 0.0472 0.4227± 0.0023

RF 0.7464± 0.0012 0.6760± 0.0010 0.5334± 0.0014 0.4102± 0.0020 0.5136± 0.0018 19.6269± 0.0248 0.6045± 0.0020

HVE 0.7904± 0.0015 0.7562± 0.0018 0.5922± 0.0017 0.5201± 0.0033 0.6566± 0.0022 18.6607± 0.0545 0.4413± 0.0033

SE 0.8052± 0.0015 0.7680± 0.0013 0.6164± 0.0009 0.5510± 0.0025 0.6738± 0.0016 18.6683± 0.0402 0.4249± 0.0023

HDP with BoW
(6, 532 × 150)

KNN 0.7718± 0.0009 0.7422± 0.0009 0.5723± 0.0017 0.4892± 0.0018 0.6318± 0.0014 18.7632± 0.0514 0.4629± 0.0014

MLP 0.7912± 0.0011 0.7557± 0.0012 0.5974± 0.0014 0.5255± 0.0019 0.6502± 0.0019 18.6689± 0.0330 0.4464± 0.0022

KNN as OvR 0.7682± 0.0008 0.7397± 0.0010 0.5661± 0.0019 0.4822± 0.0018 0.6275± 0.0014 18.7482± 0.0380 0.4666± 0.0016

LR as OvR 0.7815± 0.0010 0.7417± 0.0011 0.5850± 0.0014 0.5017± 0.0020 0.6251± 0.0016 18.9294± 0.0476 0.4729± 0.0020

SVM as OvR 0.7511± 0.0011 0.6875± 0.0008 0.5410± 0.0015 0.4245± 0.0019 0.5284± 0.0017 19.4253± 0.0279 0.5827± 0.0015

RF 0.7574± 0.0015 0.6915± 0.0014 0.5486± 0.0017 0.4359± 0.0028 0.5412± 0.0023 19.5291± 0.0314 0.5751± 0.0026

HVE 0.7826± 0.0013 0.7404± 0.0015 0.5869± 0.0008 0.5029± 0.0022 0.6229± 0.0020 18.9688± 0.0626 0.4767± 0.0029

SE 0.7851± 0.0008 0.7453± 0.0008 0.5874± 0.0014 0.5083± 0.0013 0.6317± 0.0006 18.7915± 0.0498 0.4660± 0.0014

HDP with
term weighting
(6, 532 × 150)

KNN 0.7116± 0.0015 0.6723± 0.0018 0.4887± 0.0023 0.3479± 0.0034 0.5254± 0.0031 19.3027± 0.0297 0.5724± 0.0028

MLP 0.7409± 0.0016 0.6779± 0.0027 0.5245± 0.0014 0.3997± 0.0028 0.5158± 0.0056 19.5698± 0.0277 0.5940± 0.0069

KNN as OvR 0.7076± 0.0014 0.6689± 0.0018 0.4842± 0.0024 0.3399± 0.0034 0.5213± 0.0031 19.2999± 0.0269 0.5764± 0.0028

LR as OvR 0.7458± 0.0014 0.6780± 0.0010 0.5310± 0.0019 0.4082± 0.0027 0.5161± 0.0017 19.5929± 0.0258 0.5987± 0.0019

SVM as OvR 0.7413± 0.0014 0.6801± 0.0011 0.5249± 0.0014 0.4007± 0.0024 0.5207± 0.0019 19.5542± 0.0206 0.5880± 0.0018

RF 0.7557± 0.0010 0.6880± 0.0008 0.5376± 0.0012 0.4257± 0.0017 0.5359± 0.0015 19.4695± 0.0268 0.5800± 0.0015

HVE 0.7414± 0.0017 0.6801± 0.0013 0.5249± 0.0015 0.4007± 0.0029 0.5207± 0.0023 19.5542± 0.0083 0.5880± 0.0022

SE 0.7414± 0.0017 0.6801± 0.0013 0.5249± 0.0015 0.4007± 0.0029 0.5207± 0.0023 19.5542± 0.0083 0.5880± 0.0022

LDA with TC
(6, 532 × 100)

KNN 0.7883± 0.0016 0.7512± 0.0015 0.5939± 0.0014 0.5201± 0.0029 0.6440± 0.0021 18.7220± 0.0465 0.4554± 0.0025

MLP 0.8037± 0.0010 0.7657± 0.0014 0.6181± 0.0016 0.5544± 0.0021 0.6663± 0.0020 18.5933± 0.0463 0.4341± 0.0026

KNN as OvR 0.7838± 0.0012 0.7479± 0.0010 0.5859± 0.0008 0.5098± 0.0017 0.6389± 0.0015 18.7532± 0.0544 0.4593± 0.0019

LR as OvR 0.8018± 0.0010 0.7644± 0.0012 0.6157± 0.0014 0.5505± 0.0019 0.6624± 0.0017 18.6514± 0.0467 0.4361± 0.0023

SVM as OvR 0.7773± 0.0014 0.7272± 0.0013 0.5852± 0.0016 0.4949± 0.0026 0.5999± 0.0021 19.1559± 0.0464 0.5087± 0.0025

RF 0.7569± 0.0014 0.6945± 0.0011 0.5531± 0.0013 0.4415± 0.0023 0.5462± 0.0019 19.4421± 0.0404 0.5694± 0.0022

HVE 0.8018± 0.0011 0.7633± 0.0011 0.6160± 0.0011 0.5498± 0.0017 0.6607± 0.0012 18.6970± 0.0587 0.4384± 0.0020

SE 0.7983± 0.0012 0.7570± 0.0010 0.6096± 0.0012 0.5408± 0.0017 0.6504± 0.0013 18.7473± 0.0621 0.4513± 0.0017

nursing notes processed using fuzzy token-based similarity with θ = 0.825. Ta-575

ble 5 tabulates the performance of all data modeling approaches and all predic-576

tion models using nursing notes processed without similarity. We observe that577

the Term weighting of unstructured (nursing) notes AGgregated using fuzzy578

S imilarity (TAGS ) model, modeled with LR as OvR, consistently outperforms579

more complex vector space and topic models. Furthermore, it can be observed580

from Figure 7 that, the model’s performance is higher when nursing notes are581

processed with similarity, than when processed without similarity.582
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Table 5: ICD-9 code group prediction using nursing notes of MIMIC-III (without similarity
modeling).

Data model Classifier
Performance scores

ACC AUROC AUPRC MCC F1 CE LRL

Term weighting
(6, 532 × 14, 665)

KNN 0.7866± 0.0012 0.7689± 0.0016 0.5920± 0.0025 0.5306± 0.0032 0.6697± 0.0021 18.0463± 0.0691 0.4168± 0.0027

MLP 0.7962± 0.0011 0.7694± 0.0015 0.6009± 0.0026 0.5400± 0.0029 0.6685± 0.0024 18.2134± 0.0530 0.4199± 0.0026

KNN as OvR 0.7741± 0.0017 0.7662± 0.0014 0.5764± 0.0027 0.5144± 0.0032 0.6639± 0.0020 18.1744± 0.0644 0.4179± 0.0023

LR as OvR 0.8143± 0.0014 0.7804± 0.0017 0.6378± 0.0032 0.5845± 0.0035 0.6874± 0.0030 18.2934± 0.0389 0.3985± 0.0030

SVM as OvR 0.7414± 0.0015 0.6801± 0.0015 0.5249± 0.0026 0.4007± 0.0036 0.5207± 0.0028 19.5542± 0.0368 0.5880± 0.0024

RF 0.7653± 0.0011 0.6951± 0.0013 0.5517± 0.0024 0.4449± 0.0031 0.5484± 0.0023 19.5449± 0.0387 0.5695± 0.0022

HVE 0.8064± 0.0014 0.7782± 0.0014 0.6369± 0.0031 0.5788± 0.0032 0.6832± 0.0026 18.5193± 0.0489 0.4132± 0.0023

SE 0.7971± 0.0013 0.7693± 0.0018 0.6017± 0.0032 0.5412± 0.0034 0.6682± 0.0029 18.2290± 0.0363 0.4207± 0.0030

Doc2Vec 500
(6, 532 × 500)

KNN 0.7134± 0.0013 0.5986± 0.0021 0.4719± 0.0024 0.3111± 0.0040 0.3323± 0.0059 19.9011± 0.0208 0.7824± 0.0048

MLP 0.7370± 0.0011 0.7081± 0.0017 0.5217± 0.0022 0.4113± 0.0029 0.5885± 0.0026 18.8870± 0.0421 0.5113± 0.0028

KNN as OvR 0.7177± 0.0013 0.6091± 0.0020 0.4783± 0.0020 0.3167± 0.0035 0.3627± 0.0054 19.8782± 0.0171 0.7533± 0.0048

LR as OvR 0.7970± 0.0007 0.7586± 0.0009 0.5999± 0.0020 0.5291± 0.0016 0.6659± 0.0016 18.6661± 0.0346 0.4382± 0.0017

SVM as OvR 0.8068± 0.0010 0.7678± 0.0012 0.6206± 0.0024 0.5527± 0.0025 0.6774± 0.0018 18.7267± 0.0269 0.4245± 0.0021

RF 0.7490± 0.0014 0.6801± 0.0016 0.5351± 0.0027 0.4142± 0.0037 0.5232± 0.0029 19.6314± 0.0357 0.5942± 0.0027

HVE 0.8011± 0.0006 0.7627± 0.0008 0.6083± 0.0024 0.5387± 0.0013 0.6701± 0.0011 18.6705± 0.0216 0.4318± 0.0014

SE 0.8054± 0.0009 0.7659± 0.0010 0.6179± 0.0028 0.5489± 0.0022 0.6740± 0.0018 18.7635± 0.0400 0.4279± 0.0018

Doc2Vec 1, 000
(6, 532 × 1, 000)

KNN 0.7141± 0.0016 0.6058± 0.0026 0.4754± 0.0028 0.3192± 0.0045 0.3520± 0.0069 19.8945± 0.0179 0.7643± 0.0058

MLP 0.7442± 0.0011 0.7159± 0.0017 0.5312± 0.0024 0.4270± 0.0030 0.5995± 0.0027 18.8172± 0.0321 0.4992± 0.0028

KNN as OvR 0.7162± 0.0018 0.6112± 0.0034 0.4781± 0.0037 0.3219± 0.0058 0.3671± 0.0091 19.8661± 0.0200 0.7493± 0.0076

LR as OvR 0.7749± 0.0005 0.7425± 0.0007 0.5698± 0.0018 0.4864± 0.0017 0.6418± 0.0015 18.7278± 0.0397 0.4592± 0.0010

SVM as OvR 0.8071± 0.0009 0.7684± 0.0012 0.6194± 0.0027 0.5528± 0.0026 0.6768± 0.0022 18.6731± 0.0429 0.4239± 0.0020

RF 0.7455± 0.0014 0.6760± 0.0014 0.5313± 0.0023 0.4077± 0.0032 0.5138± 0.0025 19.6283± 0.0375 0.6034± 0.0025

HVE 0.7915± 0.0009 0.7559± 0.0014 0.5943± 0.0037 0.5200± 0.0035 0.6588± 0.0029 18.6419± 0.0225 0.4410± 0.0022

SE 0.8061± 0.0011 0.7674± 0.0013 0.6179± 0.0035 0.5508± 0.0032 0.6750± 0.0025 18.6649± 0.0241 0.4256± 0.0022

HDP with BoW
(6, 532 × 150)

KNN 0.7778± 0.0011 0.7505± 0.0014 0.5792± 0.0024 0.5033± 0.0027 0.6407± 0.0019 18.5832± 0.0558 0.4502± 0.0024

MLP 0.7946± 0.0013 0.7574± 0.0016 0.6026± 0.0031 0.5336± 0.0036 0.6518± 0.0028 18.6202± 0.0417 0.4467± 0.0028

KNN as OvR 0.7733± 0.0013 0.7476± 0.0017 0.5726± 0.0030 0.4949± 0.0037 0.6367± 0.0026 18.5783± 0.0456 0.4536± 0.0027

LR as OvR 0.7878± 0.0016 0.7453± 0.0020 0.5932± 0.0030 0.5183± 0.0042 0.6307± 0.0033 18.7679± 0.0444 0.4723± 0.0033

SVM as OvR 0.7623± 0.0014 0.6926± 0.0017 0.5510± 0.0029 0.4450± 0.0038 0.5411± 0.0032 19.5415± 0.0398 0.5776± 0.0029

RF 0.7619± 0.0015 0.6982± 0.0017 0.5535± 0.0029 0.4468± 0.0039 0.5563± 0.0030 19.5531± 0.0314 0.5606± 0.0030

HVE 0.7886± 0.0011 0.7438± 0.0016 0.5941± 0.0027 0.5183± 0.0029 0.6286± 0.0024 18.8647± 0.0482 0.4759± 0.0031

SE 0.7886± 0.0006 0.7431± 0.0011 0.5935± 0.0023 0.5172± 0.0017 0.6288± 0.0018 18.8853± 0.0417 0.4766± 0.0022

HDP with
term weighting
(6, 532 × 150)

KNN 0.7108± 0.0010 0.6718± 0.0018 0.4885± 0.0025 0.3476± 0.0030 0.5262± 0.0026 19.3230± 0.0378 0.5728± 0.0027

MLP 0.7413± 0.0014 0.6783± 0.0016 0.5253± 0.0029 0.4009± 0.0037 0.5167± 0.0033 19.5623± 0.0396 0.5934± 0.0046

KNN as OvR 0.7067± 0.0012 0.6685± 0.0020 0.4837± 0.0028 0.3393± 0.0036 0.5221± 0.0029 19.3410± 0.0392 0.5767± 0.0030

LR as OvR 0.7455± 0.0016 0.6779± 0.0016 0.5301± 0.0030 0.4072± 0.0041 0.5161± 0.0030 19.5868± 0.0369 0.5984± 0.0026

SVM as OvR 0.7414± 0.0015 0.6801± 0.0015 0.5249± 0.0026 0.4007± 0.0036 0.5207± 0.0028 19.5542± 0.0368 0.5880± 0.0024

RF 0.7559± 0.0012 0.6862± 0.0018 0.5386± 0.0030 0.4259± 0.0039 0.5313± 0.0033 19.4848± 0.0370 0.5854± 0.0030

HVE 0.7444± 0.0023 0.6789± 0.0012 0.5286± 0.0038 0.4058± 0.0049 0.5179± 0.0023 19.5742± 0.0588 0.5948± 0.0031

SE 0.7413± 0.0016 0.6800± 0.0010 0.5248± 0.0025 0.4007± 0.0031 0.5206± 0.0024 19.5566± 0.0507 0.5882± 0.0015

LDA with TC
(6, 532 × 100)

KNN 0.7872± 0.0011 0.7517± 0.0012 0.5937± 0.0023 0.5197± 0.0027 0.6449± 0.0024 18.7065± 0.0454 0.4539± 0.0020

MLP 0.8039± 0.0011 0.7669± 0.0014 0.6182± 0.0025 0.5547± 0.0028 0.6681± 0.0023 18.5665± 0.0489 0.4311± 0.0025

KNN as OvR 0.7824± 0.0008 0.7482± 0.0013 0.5851± 0.0022 0.5087± 0.0026 0.6392± 0.0021 18.7217± 0.0364 0.4581± 0.0021

LR as OvR 0.8018± 0.0013 0.7639± 0.0014 0.6152± 0.0027 0.5497± 0.0033 0.6626± 0.0025 18.6916± 0.0466 0.4367± 0.0024

SVM as OvR 0.7778± 0.0016 0.7297± 0.0015 0.5858± 0.0028 0.4961± 0.0036 0.6050± 0.0027 19.1415± 0.0275 0.5024± 0.0025

RF 0.7587± 0.0015 0.6962± 0.0013 0.5527± 0.0027 0.4424± 0.0032 0.5487± 0.0024 19.4452± 0.0393 0.5655± 0.0022

HVE 0.8009± 0.0009 0.7613± 0.0009 0.6141± 0.0022 0.5469± 0.0020 0.6584± 0.0018 18.7753± 0.0523 0.4423± 0.0019

SE 0.7975± 0.0011 0.7566± 0.0013 0.6078± 0.0027 0.5388± 0.0023 0.6509± 0.0025 18.7774± 0.0599 0.4510± 0.0029

4.4. Discussion583

In clinical tasks such as disease prediction, capturing true/false positives and584

true/false negatives is of utmost importance, due to the critical nature of the585

task itself. As can be seen from the results in Tables 4 and 5, the AUROC586

metric captures the hit and miss rates, while AUPRC captures the number of587

true positives from positive predictions. AUPRC, unlike AUROC, varies with588

the change in the ratio of target classes in the data, and hence is more revealing589

while evaluating imbalanced data [79]. From Table 3, it can be observed that590

the dataset is highly class imbalanced, and hence AUPRC is more informative591

than AUROC. It can be seen that our approach outperforms the existing state-592
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of-the-art method [70] in these metrics, indicating the significant decrease in the593

false positives and false negatives. F1-measure captures both precision and re-594

call of the prediction, while MCC score serves as a balanced measure even with595

class imbalance, as it takes into account true positives, false positives, and false596

negatives. More specifically, in healthcare applications like disease or diagnosis597

prediction, false negatives (prediction miss, i.e., a disease which is present, but598

not diagnosed) are likely to cause more harm than false positives (false alarm)599

and CE captures these false negatives. LRL performs a pairwise label com-600

parison to determine the loss of prediction. Existing works have benchmarked601

their performance using only AUROC and AUPRC metrics. Since all the met-602

rics used in this research are very relevant and essential in understanding the603

proposed model’s predictive power, we benchmark these promising results for604

MIMIC-III database.605

Furthermore, the state-of-the-art work by Purushotham et al. [70] is built on606

structured EHRs that are modeled in the form of feature sets to make clin-607

ical predictions. It is a fact that the richness and abundance of information608

captured by unstructured nursing notes are often lost in the structured EHRs609

coding process [29]. Our proposed TAGS model combines the fuzzy similarity610

based data cleansing and aggregating approach with a term weighting scheme611

that captures the importance and rarity of clinical concepts, to model the infor-612

mally written clinical nursing text into a clinically relevant and usable format613

effectively. From the results, it can be seen that more complex data modeling614

approaches such as Doc2Vec and HDP, in contrast to the TAGS model, fail to615

capture all the discriminative features of the clinical nursing notes needed for the616

machine learning classifier to learn and generalize. We observe that using the617

TAGS model, risk stratification can be achieved well in advance, with an overall618

accuracy of 82.4%. Also, it can be noted that token-based similarity process-619

ing of nursing notes yields higher performance in comparison to that processed620

without similarity. These promising results emphasize the need for reduction621

in redundancy and anomalous data for relieving the cognitive burden and im-622

proving the clinical decision-making process. CDSSs built on the predictive623

capabilities of TAGS could be suitable for patient-centric and evidence-based624

treatments, resulting in reduced mortality rates and better risk assessment.625

5. Concluding Remarks626

In this paper, vector space and topic modeling approaches for multi-label clas-627

sification of unstructured nursing notes were presented, which capture the se-628

mantic information in the nursing notes effectively and leverage such informa-629

tion for disease prediction. The nursing notes were aggregated using a fuzzy630
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token-based similarity matching approach, on which several classification mod-631

els were built. Exhaustive benchmarking experimentation results on the nursing632

notes of the MIMIC-III database were presented. We demonstrated that fuzzy633

token-based similarity processing of nursing notes provides optimal data rep-634

resentation and eliminates anomalous and redundant data, in turn, improving635

the clinical decision-making process. Furthermore, we observed that the TAGS636

model consistently outperformed other complex vector space and topic model-637

ing approaches by effectively capturing the discriminative features of the nursing638

notes. The TAGS model also achieved superior predictive performance when639

benchmarked against the state-of-the-art method with 7.79% improvement in640

terms of AUPRC and 1.24% improvement in terms of AUROC.641

The improvement in prediction accuracy though small, is still significant, as642

our model utilizes unstructured clinical text, in contrast to the state-of-the-art643

model. Thus, the dependency on availability of structured EHRs for building644

CDSSs can be eliminated, which is advantageous in countries with low EHR645

adoption rates. The experimental results highlight the richness of information646

that our model was able to capture from the clinical nursing notes, highlighting647

the viability of using unstructured clinical data in disease prediction applica-648

tions. As a part of future work, we intend to validate the proposed TAGS model649

on real-time clinical data and enhance the prediction capabilities further, focus-650

ing on the need for time-aware prediction architectures in hospital scenarios.651

Furthermore, we aim at exploring the power of deep learning architectures in652

clinical prediction tasks such as disease prediction, length of stay prediction,653

hospital readmission, and phenotype classification.654
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[65] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,870

Bertrand Thirion, Grisel, et al. Scikit-learn: Machine learning in python.871

Journal of machine learning research, 12(Oct):2825–2830, 2011.872

[66] Romain Pirracchio. Mortality prediction in the icu based on mimic-ii873

results from the super icu learner algorithm (sicula) project. In Secondary874

Analysis of Electronic Health Records, pages 295–313. Springer, 2016.875

36



[67] Romain Pirracchio, Maya L Petersen, Marco Carone, Matthieu Resche876

Rigon, Sylvie Chevret, and Mark J van der Laan. Mortality prediction877

in intensive care units with the super icu learner algorithm (sicula): a878

population-based study. The Lancet Respiratory Medicine, 3(1):42–52,879

2015.880

[68] Aaditya Prakash, Siyuan Zhao, Sadid A Hasan, Vivek Datla, Kathy Lee,881

Ashequl Qadir, Joey Liu, and Oladimeji Farri. Condensed memory net-882

works for clinical diagnostic inferencing. In Thirty-First AAAI Conference883

on Artificial Intelligence, 2017.884

[69] Sanjay Purushotham, Wilka Carvalho, Tanachat Nilanon, and Yan Liu.885

Variational recurrent adversarial deep domain adaptation. 2016.886

[70] Sanjay Purushotham, Chuizheng Meng, Zhengping Che, and Yan Liu.887

Benchmarking deep learning models on large healthcare datasets. Journal888

of biomedical informatics, 2018.889

[71] Alvin Rajkomar, Eyal Oren, Kai Chen, Andrew M Dai, Nissan Hajaj,890

Michaela Hardt, Peter J Liu, Xiaobing Liu, Jake Marcus, et al. Scalable891

and accurate deep learning with electronic health records. npj Digital892

Medicine, 1(1):18, 2018.893

[72] Rajesh Ranganath, Adler Perotte, Noémie Elhadad, and David Blei. Deep894

survival analysis. arXiv preprint arXiv:1608.02158, 2016.895

[73] SR Rassekh, M Lorenzi, L Lee, S Devji, M McBride, and K Goddard.896

Reclassification of icd-9 codes into meaningful categories for oncology sur-897

vivorship research. Journal of cancer epidemiology, 2010, 2010.898

[74] Narges Razavian, Jake Marcus, and David Sontag. Multi-task prediction899

of disease onsets from longitudinal laboratory tests. In Machine Learning900

for Healthcare Conference, pages 73–100, 2016.901

[75] Radim Rehurek and Petr Sojka. Software framework for topic modelling902

with large corpora. In In Proceedings of the LREC 2010 Workshop on903

New Challenges for NLP Frameworks. Citeseer, 2010.904

[76] Ryan Rifkin and Aldebaro Klautau. In defense of one-vs-all classification.905

Journal of machine learning research, 5(Jan):101–141, 2004.906
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