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Abstract

The predictive accuracy of high-dimensional biomedical datasets is often dwin-
dled by many irrelevant and redundant molecular disease diagnosis features.
Dimensionality reduction aims at finding a feature subspace that preserves the
predictive accuracy while eliminating noise and curtailing the high computa-
tional cost of training. The applicability of a particular feature selection tech-
nique is heavily reliant on the ability of that technique to match the problem
structure and to capture the inherent patterns in the data. In this paper, we
propose a novel filter-wrapper hybrid ensemble feature selection approach based
on the weighted occurrence frequency and the penalty scheme, to obtain the
most discriminative and instructive feature subspace. The proposed approach
engenders an optimal feature subspace by greedily combining the feature sub-
spaces obtained from various predetermined base feature selection techniques.
Furthermore, the base feature subspaces are penalized based on specific per-
formance dependent penalty parameters. We leverage effective heuristic search
strategies including the greedy parameter-wise optimization and the Genetic Al-
gorithm (GA) to optimize the subspace ensembling process. The effectiveness,
robustness, and flexibility of the proposed hybrid greedy ensemble approach
in comparison with the base feature selection techniques, and prolific filter and
state-of-the-art wrapper methods are justified by empirical analysis on three dis-
tinct high-dimensional biomedical datasets. Experimental validation revealed
that the proposed greedy approach, when optimized using GA, outperformed
the selected base feature selection techniques by 4.17%–15.14% in terms of the
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prediction accuracy.
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1. Introduction1

The need for efficient analytical methodologies in healthcare applications has2

led to an unparalleled development in the field of biomedicine and bioinformat-3

ics over the past decade [41, 62]. Research in these fields frequently encounters4

supervised classification of disease data (e.g., microarray gene data, lung cancer5

data, and others) [41, 14, 2]. The advances in wet-technology are increasing6

the volume of data with a large number of dimensions [33]. For example, the7

profiling of microarray gene [33, 10, 34] aims at measuring the expression levels8

of tens of thousands of genes over tens of thousands of features. Over the last9

decade, owing to the availability of high dimensional biomedical data, numer-10

ous feature selection methods have become viable processes that provide robust11

data in low-dimensional spaces [55, 25]. In the sense of high dimensional data,12

standard statistical methods suffer from the curse of dimensionality [8, 30] sig-13

nifying a drastic rise in the classification error and computational complexity.14

This makes it mandatory to use a feature subspace before the classification is15

undertaken [50, 54, 28]. Therefore, feature selection does not represent the very16

aim of data analysis but is instead a preliminary step to finding the most in-17

formative and discriminative feature subset that optimally represents the given18

data.19

Dimensionality reduction can aid in the provision of better insights to under-20

standing causal relationships, reduce computational complexities, and engender21

more reliable estimates [61, 12]. There are numerous methods to achieve di-22

mensionality reduction including feature selection based on information gain23

and minimum Redundancy Maximum Relevance (mRMR). Real-world datasets24

vary, implying that no single feature selection technique is best suited for all the25

datasets [18]. The effectiveness of a feature selection technique depends on its26

ability to match the problem structure and maintain only those features that27

describe the inherent patterns within the data. The selection of such a technique28

is usually heuristic and intuition based. The challenge to the machine learner29

is the selection of a feature selection technique that works best for a given30

dataset. A naive approach to achieve the same would be to select a technique31

from the set of predetermined techniques that results in the best performance.32

This approach is computationally very expensive and infeasible. An alternative33

approach would be to perform a heuristic selection which is further explored34

using evolutionary computational algorithms [29]. This approach requires an35

investment of an arbitrary amount of computation time, and the actual optimal36

solution and the obtained solution might not converge for a limited number of37

iterations [1, 22].38

Early works [15, 17, 69] aimed at using filter approaches to determine the39

most optimal feature subspace. These approaches are heavily reliant on the40
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Table 1: Comparison with state-of-the-art works in feature selection.

Masood et al.
2017

Dong et al.
2018

Tu et al.
2019

This work

Feature
selection type

Wrapper and
filter-wrapper
hybrid

Heuristic search Heuristic search Filter-wrapper
hybrid with
heuristic search

Approaches
used

Wrapper and
hybrid approaches

Hybrid GA with
granularity

Multi-strategy
ensemble grey wolf
optimizer

Hybrid greedy
ensemble selection
approach

Ensembling − − 3 search strategies 5 filter-wrapper
hybrid methods

Search strategy − Bottom-up search
of ordered feature
list

Grey wolf
optimizer

Correlation-guided
greedy feature
search

Parameter
optimization

− GA Disperse foraging
strategy

Greedy-parameter
wise optimization
and GA

Max.
#features

21 (×4 sensors) 12,582 60 2,352

Corresponding
#samples

28 (occupants) 72 208 10,015

Corresponding
#classes

4 10 3 7

Algorithms
used

RIGa and ELM − − RFb, BDTc, and
KNNd

aRelative Information Gain; bRandom Forest ; cBagged Decision Tree; dK-Nearest Neighbors.

correlation between the features and are independent of the classifier which41

limits their accuracy. Min et al. [45] developed a backtracking and heuristic42

search algorithm to search for optimal feature subspaces. The authors showed43

that the performance of the evolutionary computing algorithm was similar to44

backtracking but with lower computational time. More recently, Masood et45

al. [42] proposed wrapper and hybrid algorithms which used an incremental46

search on an ordered set of features and Extreme Learning Machine (ELM)47

classifier to select the best feature subspace. A hybrid genetic algorithm with48

feature granulation was developed by Dong et al. [16] for feature selection.49

Tu et al. [64] proposed a multi-strategy ensemble grey wolf optimizer with50

three search strategies and demonstrated its effectiveness in selecting optimal51

features. From the existing literature, it is evident that hybrid and wrapper52

feature selection methods overcome the limitations of filter methods. Moreover,53

evolutionary computing algorithms are widely used in feature selection because54

of their population-based mechanism and domain adaptability.55

Although most state-of-the-art methods aim at effectively determining an56

optimal feature subspace, they are either extremely data specific or utilize57

heuristic-based approaches requiring an arbitrary amount of time with no guar-58

antee on their convergence. Furthermore, heuristic search methods using swarm59

intelligence seldom use correlation measures to guide the search process. To ad-60

dress these problems, we propose a novel ensemble selection approach that uses61

a set of (five) predetermined feature selection techniques on a representative62
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sample of the dataset to generate multiple feature subspaces. These subspaces63

are then evaluated using (three) different supervised classification algorithms.64

The features in the subspaces obtained from the set of chosen feature selection65

techniques are then penalized based on the evaluation scores, to form an optimal66

subset of features selected greedily. The penalty factors that affect the choice67

of features in the hybrid subset are optimized using the greedy parameter-wise68

optimization and the Genetic Algorithm (GA). Moreover, the penalty factors69

are modeled in a way that is aimed at selecting smaller and most instructive70

feature subspace. Since the feature selection is performed on a sample of the71

dataset as opposed to the entire dataset, the computational cost is relatively72

low. Furthermore, the values of the penalty factors that affect the choice of the73

features in the final feature subspace are heuristically determined, limiting the74

problem of algorithmic convergence occurring when the features themselves are75

heuristically selected. Table 1 shows the comparison of this work with the exist-76

ing state-of-the-art methods in effective feature selection. The key contributions77

of this work are summarized below:78

• Design of a filter-wrapper hybrid ensemble selection approach that kin-79

dles an optimal feature subspace by greedily combining the subspaces80

generated by various predetermined feature selection techniques based on81

specific performance dependent penalty parameters.82

• Leveraging heuristic search strategies such as greedy parameter-wise op-83

timization and GA to determine the optimal values of the penalty factors84

which affect how different feature subspaces are ensembled to engender an85

optimal feature subspace.86

• We present detailed benchmarking results of our hybrid greedy ensemble87

feature selection approach on three distinct high-dimensional biomedical88

datasets. Our experimental results indicate the efficiency and robustness89

of the proposed approach over the base feature selection methods, and90

other prolific filter and wrapper methods.91

The remainder of the paper is structured as follows: Section 2 provides an92

overview of the existing works and reviews their evaluation approaches, advan-93

tages, and limitations. Section 3 presents the statistics of the datasets used and94

addresses the fundamentals of the utilized feature selection algorithms, classifi-95

cation algorithms, and GA. The proposed greedy methodology is presented in96

Section 4 and the same is evaluated empirically in Section 5. In Section 6, a97

sensitivity analysis is presented to assess the performance of the results. Finally,98

Section 7 concludes this paper with highlights on future research possibilities.99

2. Related work100

An extensive body of research on the effective determination of most descrip-101

tive feature subspace is available in the literature [60, 3]. This section provides102

an extensive review of a few significant dimensionality reduction approaches103
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to provide an overview of the existing state-of-the-art methods built on large104

biomedical datasets.105

Feature selection approaches can be categorized into four categories includ-106

ing filter, wrapper, embedded, and hybrid models. In the field of biomedicine,107

feature selection is widely used in sequence analysis (signal analysis and content108

analysis) [31] and microarray analysis. Sequence analysis aims at the deter-109

mination of the sequence (e.g., carbohydrates, proteins, and others), its frag-110

mentation, and its interpretation. Apart from the features that represent amino111

acid or nucleotide, many other features resulting from the combinations of these112

building blocks can be derived. Since most of these features are redundant or113

irrelevant, feature selection techniques are mandatory to derive a subset of rele-114

vant features [55]. Moreover, most features are extracted from a sequence where115

adjacent positions in the sequence hold most dependencies. Early works [56, 4]116

developed and used interpolated Markov model which used the interpolation117

between various Markov model’s orders to deal with the limited number of sam-118

ples of small sizes. The model was further extended to deal with non-adjacent119

dependencies by using feature subset sampling with undersampling of majority120

class. These previous works showed significant performance improvement using121

Support Vector Machines (SVM) with full undersampling and feature selection.122

A more trending area of research is the microarray analysis, where structural123

elements such as splice sites, Translation Initiation Sites (TIS) are modeled as124

classification problems [55]. Microarray analysis uses gene expression profiling125

of tissues or cell samples to determine which combination of genes are turned126

on. Microarray datasets pose challenges to modeling due to their low samples-127

to-dimensions ratio [2]. Li and Yen [35] proposed an optimization based on128

multiobjective binary biogeography (filter approach), with SVM classifier, and129

evaluated the computational complexity of their approach on multiple datasets.130

Liao et al. [37] used a filter method of selecting genes based on locality-sensitive131

Laplacian scoring scheme, with SVM classifier. The authors evaluated their ap-132

proach using a variety of datasets including Leukemia and Lung Cancer datasets.133

From the criterion of accuracy, it can be inferred that the early works which134

used filter-based feature selection techniques suffered from the limitation that135

the correlation measure used to assess the importance of features is classifier136

independent.137

Wrapper, hybrid, and embedded approaches address the limitations of filter-138

based approaches. Sharma et al. [58] proposed a wrapper-based approach to139

select features based on null space linear discriminant analysis, with K-Nearest140

Neighbors (KNN), evaluated the approach using sensitivity analysis. Yu et al.141

[67] used sample weighting to select stable genes from microarray data using142

recursive feature elimination with SVM (wrapper approach). Liu et al. [38]143

proposed a hybrid feature selection approach that involved the usage of Bhat-144

tacharyya distance as the filter and fuzzy interactive self-organizing algorithm145

as the wrapper. Hajiloo et al. [23] proposed a hybrid method of rule-based146

classification using fuzzy SVM as the wrapper and signal-to-noise ratio as the147

filter. Masood et al. [42] presented wrapper and hybrid algorithms which used148

bottom-up incremental search on an ordered set of features. The authors used149
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Table 2: Summary of some key existing works.

Work Feature selection approach Classifier Evaluation
method

Liu et al.
[39]

Wrapper approach based on the
fuzzy interactive self-organizing
data algorithm for sample
selection

KNN, Linear
SVM

Recognition
rate, Area
Under Curve
(AUC)

Chang et al.
[13]

Hybrid feature selection method
using GA, ReliefF and adaptive
neuro-fuzzy inference system

Neural net,
SVM, Logistic
regression,
Fuzzy system

AUC, K-fold
cross-validation

Liang et al.
[36]

An embedded method with
regularized multinomial sparse
logistic regression with L1/2

penalty

KNN Leave one-out
cross-validation

Song et al.
[59]

Fast ensemble method that
selects feature subsets using
graph-theoretic clustering
techniques

Naive Bayes,
C4.5, IB1,
Rule-based
RIPPERe

Sensitivity,
K-fold cross-
validation,
Runtime

Maulik and
Chakraborty
[43]

Filter approach that uses rough
set based on prediction scheme
using fuzzy preference for
Cancer datasets

Transductive
SVM

K-fold
cross-validation

Yu et al.
[68]

An ensemble semi-supervised
clustering approach based on
modified double selection for
tumor clustering

K-means
clustering

SDf and Mean
of normalized
MIg

eRepeated Incremental Pruning to Produce Error Reduction;
fStandard Deviation; gMutual Information.

ELM for the incremental search and relative information gain for feature rank-150

ing. Gaafar et al. [19] proposed an ensemble selection method based on mRMR151

and GA, with KNN classifier for cancer diagnosis using microarray data. Table152

2 reviews other related key existing works in the field of feature selection in153

biomedicine and bioinformatics. Although wrapper, hybrid, and embedded ap-154

proaches overcome the limitations of filter-based approaches by ensuring lower155

error of the model, they are highly dataset and classifier specific. The challenge156

of the selection of a dimensionality reduction technique that effectively matches157

the problem structure is quite difficult and is often heuristic or intuition based.158

More recently, metaheuristic search optimizations such as GA and parti-159

cle swarm optimization have been applied to search for the optimal feature160

subspace. In comparison with the traditional methods, metaheuristic search161

approaches do not make assumptions about the search space (e.g., differen-162

tiable and linearly separable). Furthermore, the success of these swarm intel-163

ligence algorithms can be attributed to their versatility and flexibility, in the164
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sense that they mimic the best features in nature. Dong et al. [16] proposed165

a hybrid genetic algorithm with feature granulation to select significant fea-166

tures. To improve the quality of the feature subset, the authors developed an167

improved neighborhood rough set approach with sample granulation. Tu et al.168

[64] proposed a multi-strategy ensemble grey wolf optimizer to select the feature169

subspace effectively. Furthermore, the authors used a parameter self-adjusting170

strategy to balance between exploitation and exploration of the feature space.171

Even though evolutionary computing algorithms overcome the limitations of the172

wrapper and hybrid methods, they are reliant on heuristic search requiring an173

arbitrary amount of time with no guarantee on the convergence of the obtained174

solution within the given number of iterations. Furthermore, these swarm intel-175

ligence algorithms seldom use correlation measure to guide the search process.176

Our work advances the efforts of these previous state-of-the-art methods177

by using a novel filter-wrapper hybrid ensemble feature selection approach that178

engenders an optimal feature subspace by greedily combining the subspaces gen-179

erated from various predetermined feature selection techniques. Furthermore,180

the feature subspaces are penalized based on their evaluation scores with re-181

spect to the predetermined classifier(s). Since the feature selection is performed182

on a sample of the dataset as opposed to the entire dataset, the computational183

cost is relatively low. Moreover, the values of the penalty parameters are de-184

termined heuristically, limiting the convergence problem occurring when the185

features themselves are heuristically determined.186

3. Materials and methods187

The experimental data consists of three biomedical datasets which are first188

described. All the datasets used are split into three mutually and collectively189

independent homogeneous samples using stratified random sampling [49]. Strat-190

ified random sampling guarantees the adequate representation of all the classes191

in the data, maintaining homogeneity within stratum and heterogeneity between192

strata1. The feature selection methods used in greedily deriving the hybrid fea-193

tures are discussed, followed by the discussion of the classification algorithms194

used in the evaluation of the feature selection techniques. Finally, the genetic195

algorithm used in the optimization of the penalty parameters that are used in196

deriving the hybrid feature subspace is detailed.197

3.1. Biomedical datasets198

The main characteristics of the datasets used in this paper are tabulated in199

Table 3. The datasets chosen have a sufficient number of samples to aid in the200

creation of three stratified samples. Both balanced and imbalanced datasets are201

chosen for an unbiased evaluation of the proposed technique. Depending on the202

size of the dataset, further sampling of the strata can be performed.203

1Proportionate allocation variant of the stratified random sampling is used in this paper.
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Table 3: Overview of the datasets used.

Dataset Size #Dim #Classes (#samples per class)

TIS [51] 13,375 927 2 (3,312/10,063)

Skin Cancer [63] 10,015 2,352 7
(327/514/1,099/115/6,705/142/1,113)

Seizure [5] 11,500 179 5 (2,300/2,300/2,300/2,300/2,300)

Translation Initiation Sites (TIS) dataset [51] is extracted from the genome204

sequences of a selected set of vertebrates that were extracted from the GenBank205

[9]. The process involves finding the site at which the translation of mRNA to206

proteins initiates. The sequences are annotated with TIS (true or false). Since207

the dataset is comprised of processed DNA sequences, the TIS site is essentially208

an ‘ATG2’ sequence. The sequences are extracted to build a feature space by209

matching three nucleotides to one amino acid, counting the frequency of every210

amino acid and frequency of a pair of amino acids [32].211

Skin Cancer dataset is extracted from the pixel information of 28×28 RGB212

images of the Skin Cancer MNIST: HAM10000 (Human Against Machine with213

10,000 training images) dataset [63]. The dataset comprises of a large collection214

of dermatoscopic images of the pigmented skin lesions. The dataset consists of215

all the important diagnostic categories of pigmented lesions including basal cell216

carcinoma, actinic keratosis and Bowen’s disease, benign keratosis-like lesions,217

melanoma, dermatofibroma, vascular lesions, and melanocytic nevi.218

Epileptic Seizure Recognition dataset [5] consists of five sets (A–E ), each219

containing 100 single channel 23.6 seconds long electroencephalogram (EEG)220

segments. Each EEG segment is weakly stationary and is selected after a visual221

inspection for artifacts [20]. Surface EEG recordings of five healthy individuals222

form sets A (with eyes closed) and B (with eyes open). Segments measured from223

five patients in seizure-free intervals from opposite hemisphere’s hippocampal224

formation and in the epileptogenic zone form sets C and D respectively. Seizure225

activity corresponding to all the recording sites showing the ictal activity forms226

set E.227

3.2. Feature selection methods228

The feature selection methods used to generate feature subspaces which are229

in turn used in the generation of the hybrid feature subspace are discussed in230

this section. Five feature selection techniques are used in this paper (four with231

feature ranking, one without feature ranking). The implementations available in232

Weka 3.8.3 [27] were used to implement all the predetermined feature selection233

methods.234

2Adenine(A), Thymine (T), and Guanine (G).
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3.2.1. Information gain-based feature selection235

Information gain-based feature selection (igFeatureEval) [6] evaluates the236

goodness (worth) of a feature by computing the Information Gain (IG) of a237

feature with respect to the target class. Concisely, IG measures the amount of238

information (in bits/Shannons) obtained to predict the target class by knowing239

the presence or absence of a feature. IG between a feature (f) and the target240

class is given by Equation 1, where H(·) represents the marginal entropy, and241

H(class|f) measures the conditional entropy of f after observing the target class.242

IG(f, class) = H(class)−H(class|f) (1)

The igFeatureEval is a fast filter-based feature selection method. The se-243

lected features (based on the threshold) are ranked in the order of decreasing244

IG scores.245

3.2.2. Correlation-based feature selection246

Correlation-based feature selection (corrFeatureEval) [24] evaluates the good-247

ness (worth) of a feature by computing the Pearson’s (bi-variate) correlation248

(PCC) between the feature and the target class. Equation 2 gives the Pearson’s249

correlation measure between a feature (f) and the target class, where E[·] rep-250

resents the expected value, µx represents the mean of x, and σx represents the251

standard deviation of x.252

PCC(f, class) =
E[(f − µf )(class− µclass)]

σfσclass
(2)

The corrFeatureEval is also a fast filter-based feature selection technique.253

The features selected (based on the threshold) are ranked in the decreasing254

order of PCC scores.255

3.2.3. Correlation-based feature subset selection256

Correlation-based feature subset selection (cfsSubsetEval) [24] considers the257

redundancy between the features and the individual predictive ability of fea-258

tures, to evaluate the goodness (worth) of a feature subset. Subsets with lower259

inter-correlation and high correlation with the target class are chosen. The260

worth of a feature subset S with k features is given by Equation 3, where C261

measures the relatedness of two variables (correlation, not necessarily Pearson’s262

correlation or Spearman’s ρ).263

Worth(Sk) =

∑
fi∈Sk

C(fi, class)√ ∑
fi∈Sk

∑
fj∈Sk−{fi}

C(fi, fj)
(3)

Symmetric uncertainty [65], an entropy-based measure of relatedness is used264

in this paper. Symmetric uncertainty between two variables Xi, Xj is given by265
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Equation 4, where MI(Xi, Xj) measures the mutual information between Xi,266

Xj and H(·) represents the marginal entropy.267

Uncertainty(Xi, Xj) = 2 · MI(Xi, Xj)

H(Xi) +H(Xj)
(4)

The subspace of feature subsets is searched forward, starting with an empty268

feature subspace, by greedy hillclimbing with backtracking. Note that this269

search approach provides no feature ranking.270

3.2.4. Minimum redundancy maximum relevance271

Minimum Redundancy Maximum Relevance (mRMR) [52] is an incremen-272

tal search method which integrates relevance and redundancy into a single273

objective function that aims at maximizing relevance and minimizing redun-274

dancy. The scoring function can combine redundancy and relevance as: 1)275

relevance−redundancy, which is Mutual Information Difference (MID) or 2)276

relevance/redundancy, which is Mutual Information Quotient (MIQ). The MID277

objective function (Φ) used to achieve mRMR is given by Equation 5, where278

MI(Xi, Xj) measures the mutual information between Xi, Xj .279

Φ =
1

|Sk|
∑
fi∈Sk

MI(fi, class)− 1

|Sk|2
∑

fi,fj∈Sk

MI(fi, fj) (5)

The mRMR approach is used with C4.5 decision trees (information gain).280

This feature selection approach ranks in decreasing order, the selected features281

(based on the threshold) based on mRMR scores.282

3.2.5. OneR-based feature selection283

OneR-based feature selection (oneRFeatureEval) [48] evaluates the worth of284

a feature by using OneR as the filter to select features, by recursive elimination.285

The OneR algorithm aims at deducing a rule that predicts the target class based286

on the given values of the features. The algorithm chooses the feature with more287

information and forms an entire rule based on that feature [7].288

The oneRFeatureEval technique uses a rule to evaluate the usefulness of289

features. The selected features (based on the threshold) are ranked in the order290

of decreasing OneR rule scores.291

3.3. Classification algorithms292

Three classification algorithms from the existing literature including Random293

Forest (RF) [26], Bootstrap Aggregating with C4.5 Decision Trees (BDT) [11],294

and K-Nearest Neighbors (KNN) [53] are used in the evaluation of the predictive295

capabilities (in the form of accuracy scores) of the selected informative features.296

The implementations available in the Python Scikit-learn package were used to297

implement all the classifiers used in this paper.298

Random Forest [26] is an ensemble learning technique that operates by con-299

structing a number of decision trees while training. RF predicts the target class300

as the mode of the classes of individual trees. Bootstrap Aggregating (Bagging)301
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Figure 1: The flow of the genetic algorithm used in the optimization of the penalty parameters.

[11] is a machine learning ensemble meta-algorithm that improves the stability302

and accuracy of machine learning algorithms (here, decision trees). Bagging is303

a special case of the averaging technique. The method reduces variance and304

avoids overfitting. K-Nearest Neighbors [53] is an instance-based (lazy) learner305

that uses the majority vote of its k closest neighbors (distance between the data306

points gives a measure of their closeness) to determine the target class.307

In this paper, RF classifier was used with 100 classification and regression308

trees of maximum depth 2. Furthermore, BDT classifier was used with an en-309

semble of 100 C4.5 decision trees as base estimators to obtain diversity among310

the base trees. Finally, 15 closest neighbors were considered (empirically deter-311

mined using grid search) in this analysis, where closeness was weighted as the312

inverse of the distance between instances.313

3.4. Genetic algorithm314

The Genetic Algorithm (GA) [46] is a bio-inspired metaheuristic belonging315

to the class of evolutionary algorithms. Evolutionary algorithms are essentially316

swarm intelligence based heuristic search methods. The GA was implemented317

in Python 2.7.318

In solving optimization problems, the idea of GA is that they start with319

a randomly generated population of individual solutions. The fitness function320

measures the quality of an individual in the population. Genetic operators aid321

in the conversion of one generation into the next one. The first operator is the322

selection operation which aims at selecting a portion of the existing population323

that breeds into the next generation. Individuals are selected based on their324

fitness scores, and higher fitness scores imply higher reproductive capability.325

Thus the fittest individuals are more likely to be selected while individuals with326

lower fitness scores may not be selected for reproduction [66]. The next step327

is to generate a new population using crossover (recombination) and mutation.328

11



Table 4: Summary of the stratified samples used in hybrid feature selection.

Sample Feature space Summary

S1 #Features(dataset) Feature selection using the chosen methods

S2 #Features(S1) Evaluation of the selected features and deriving
the hybrid feature subspace

S3 Hybrid Evaluation of the hybrid feature subspace

Crossover and mutation aim at replicating the randomness in any evolutionary329

process. For every new population produced, a pair of parent individuals are330

chosen for breeding and thus the child produced as a result of crossover and331

mutation shares many characteristics of the parents. The overall flow of GA is332

shown in Figure 1.333

The genetic operators ensure that the subsequent generation population of334

chromosomes is different from the previous one. More often than not, the aver-335

age fitness of the new generation will have increased, as only the best individuals336

from the previous generation are chosen for breeding, together with a small pro-337

portion of less fit individuals which ensures the genetic diversity within the pool338

of parents and thus ensures the genetic diversity within the children of the next339

generation.340

In this paper, GA is used to determine the optimal values of the penalty fac-341

tors that determine how different feature subspaces can be effectively combined.342

Thus the size of each chromosome is equal to the number of penalty parame-343

ters, and the population size is set to 50 to achieve optimal intensification and344

diversification within the given number of iterations. Furthermore, GA is im-345

plemented with roulette-wheel selection (fitness-proportionate selection) [21], a346

crossover factor (Pc) of 0.6, and a mutation factor (Pm) of 0.1 (for a maximum347

of 25 iterations).348

4. Proposed novel filter-wrapper hybrid greedy ensemble approach349

for optimal feature selection350

The proposed filter-wrapper hybrid feature selection approach uses three351

samples that are derived from the dataset using stratified random sampling352

[49]. Division of population into strata reduces the computational complexity353

and the sampling error. The first sample (S1) is used in selecting features from354

the predetermined feature selection technique(s) (five here). The feature space355

of the second sample (S2) is then reduced to the set of features selected using356

S1. Then, S2 is evaluated using the selected classifier(s) (three here). Based on357

the features selected in S1 and the accuracies obtained from the evaluation of358

S2, the feature subspace for the third sample (S3) is determined greedily using359

penalty parameters. Table 4 summarizes the use of stratified samples in hybrid360

feature selection. Figure 2 presents an overview of the proposed hybrid greedy361

ensemble approach and additional details of the same are presented below.362
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Figure 2: An overview of the proposed greedy hybrid ensemble feature selection modeled from
a set of n (five here) predetermined feature selection methods (fsis).

4.1. Scoring of features and feature selection methods363

The feature subspaces obtained (one for every feature selection technique,364

five here) from S1 are used to derive the feature scores (featScore). The feature365

score of a feature f with respect to a feature selection method (with the feature366

subspace FS of length |FS|) with rank ρf (= index(f) + 1)3 is derived using367

the Equation 6.368

featScore(f,FS, ρf ) =


|FS|−ρf+1
|FS| , f ∈ ranked FS

1
|FS| , f ∈ unranked FS
−1
|FS| , f 6∈ FS

(6)

Feature scores can be positive or negative depending on the presence or ab-369

sence of a feature in the given feature subspace. Also, it can be noted that370

featScore gives importance to selecting a lesser number of features, thus achiev-371

ing the very aim of dimensionality reduction.372

The accuracy scores obtained (one for every feature selection method, five373

here4) from S2 are used to derive the scores of the chosen base feature selection374

techniques (accScore). The accScore of a feature selection method m from the375

3The rank ρf is only calculated when features in FS are ranked.
4The average accuracy of RF, BDT, and KNN is considered for simplicity.
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set of chosen base feature selection methodsM (|M| = 5 here) with rank ρm (=376

index(m) + 1, m ∈ M ranked in the decreasing order of accuracies) is derived377

using the Equation 7.378

accScore(m,M, ρm) =
|M| − ρm + 1

|M|
(7)

The accuracy scores are positive scores that ensure the selection of many fea-379

tures from those feature selection methods with higher accuracy. Furthermore,380

the accuracy scores are only positive to account for the possibility of feature se-381

lection from a base method with reduced dimensions and comparable but lower382

performance.383

4.2. Penalty parameters for greedy ensembling of base feature subspaces384

Penalty parameters facilitate performance dependent greedy selection of op-385

timal features from the base selection techniques. They affect the extent of the386

impact of both the informativeness of the features and the classification accuracy387

of the base selection methods. The accuracy penalty (ψ) and feature penalty388

(τ) aim at penalizing the feature scores and accuracy scores respectively. The389

accuracy penalty aims at penalizing feature subspaces of the feature selection390

methods with S2 accuracy less than the S2 accuracy with the entire feature391

space. Accuracy penalty reduces the impact of the accScore. Concisely, the392

accScore becomes accScore/ψ.393

Similarly, the feature penalty aims at increasing the negative impact of those394

features which are not selected by a feature selection technique, only when the395

S2 accuracy of the feature selection technique is greater than the S2 accuracy396

with the entire feature space. Concisely, the featScore becomes featScore × τ397

(only for features with a negative featScore).398

4.3. Overall feature scoring and hybrid feature selection399

Overall scoring aims at combining the feature scores and accuracy scores to400

obtain the overall score which helps in the determination of the greedily selected401

most optimal hybrid feature subspace. Overall feature score of a feature f with402

respect to the given set of base selection methods M is given by the Equation403

8.404

overallScore(f,M) =

M∑
m

featScore(f)× accScore(m) (8)

By setting the decision parameter (threshold (θ)), we can filter the features405

based on their overall feature scores. The decision parameter aims at selection406

higher-ranked (|FS| − ρf + 1) features from better performing base selection407

methods. The features thus selected form the greedily selected optimal hybrid408

feature subspace. Table 5 summarizes the scores and parameters used in the409

proposed greedy ensemble hybrid selection approach. Hereafter, the decision410

parameter (θ) is referred to as a penalty parameter as it affects the selection411
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Table 5: Summary of the scores and parameters used in hybrid feature selection.

Parameter Inference Summary

featScore Positive or negative
scores

Ensures that the hybrid feature subspace is
formed from the features selected by the
base methods

accScore Positive scores Ensures the selection of features from high
accuracy feature selection methods

ψ Reduces impact of
accScore

Penalizes the selection of features from
base methods (fsi) with S3 accuracy < S3
accuracy with entire feature space (fsnil)

τ Increases negative
impact of featScore

Penalizes the selection of features not
selected in a feature selection technique
(only when method’s S3 accuracy > S3
accuracy with entire feature space (fsnil))

θ Selection criteria Determines the number of features to be
selected based on the overallScore

process through overall scores which are penalized by both accuracy and feature412

penalties.413

Algorithm 1 depicts the procedure to obtain the ensembled optimal hy-414

brid feature subspace greedily from a given list of feature subsets (FS Lists),415

S2 Accuracies, S2 accuracy with the entire feature space (S2 All Features Acc),416

total number of features (totalFeat), accuracy rank list (ρm List) and penalty417

parameters (ψ, τ , θ). Note that Algorithm 1 assumes that the penalty param-418

eters are optimized prior to the greedy feature search.419

4.4. Optimization of the penalty parameters420

Optimization of the penalty parameters (ψ, τ , θ) used in the deduction of the421

optimal hybrid feature subspace is mandatory as these parameters determine the422

greedy selection of features from the base feature subspaces. We leverage heuris-423

tic search strategies such as greedy parameter-wise optimization and GA to ob-424

tain the best selection results. Compared to the traditional search strategies,425

heuristic approaches do not need any domain knowledge and do not make any426

assumptions about the search space. Furthermore, heuristic search strategies427

can reveal multiple optimal solutions in a single run. In greedy parameter-wise428

optimization, the penalty parameters are varied greedily starting with the accu-429

racy penalty (ψ), followed by the feature penalty (τ), and finally the threshold430

(θ) to obtain the optimal values of these parameters. In GA, the initial gener-431

ation of population solutions are generated by selecting random values in the432

predetermined range(s) (dataset dependent). The predetermined ranges were433

set with higher feature penalty range and comparably lower accuracy penalty434

range. Higher feature penalty range was set to heavily penalize those less dis-435

criminative features that were not selected by better performing base methods436

but were selected by methods with lower performance. Lower accuracy penalty437
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Algorithm 1: Proposed hybrid greedy ensemble feature selection

Input: S2 All Features Acc: Average accuracy with all features of S2,
S2 Accuracies: List of average accuracies from predetermined methods,
FS Lists: List of all selected feature subsets,
totalFeat: Total number of features in the given dataset,
ρm List: List of ranks of predetermined selection methods,
ψ: Accuracy penalty parameter,
τ : Feature penalty parameter,
θ: Selection threshold.

Output: Hybrid FS: Greedily selected optimal feature subset.
1: accScores ← [0] * |FS Lists|
2: overallScores ← [0] * totalFeat
3: for idx← 0 to |FS Lists| do
4: accScores[idx] ← accScore(method, |FS Lists|, ρm List[idx])
5: if S2 Accuracies[idx] < S2 All Features Acc then
6: accScores[idx] ← accScores[idx]/ψ
7: end
8: for featIdx← 0 to totalFeat do
9: featScore ← featScore(feat, FS Lists[idx], featIdx + 1)

10: if S2 Accuracies[idx] > S2 All Features Acc and feat 6∈ FS Lists[idx] then
11: featScore ← featScore * τ
12: end
13: overallScore ← featScore * accScore[idx]
14: overallScores[featIdx] ← overallScores[featIdx] + overallScore

15: end

16: end
17: hybridFeatures ← [ ]
18: for score ∈ overallScores do
19: if score > θ then
20: hybridFeatures.append(feat)
21: end

22: end
23: return hybridFeatures

range accounts for the possibility of selection from a base method with reduced438

dimensions and comparable but lower performance. Furthermore, the minimum439

number of features to be selected was set to 0.1× the total number of features to440

reject extremely low dimensional feature subspaces resulting in near-zero per-441

formance. The fitness function used to evaluate individuals is the average of442

S3 (with features of the hybrid subspace) accuracies obtained using RF, BDT,443

and KNN classifiers with 10-fold cross-validation. The stopping criteria for GA444

was achieved when either the optimal solution convergence or a limit on the445

maximum of iterations was reached. The flow of the proposed hybrid greedy446

ensemble feature selection optimized using GA is illustrated in Figure 3.447
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Figure 3: The main process of the proposed hybrid greedy ensemble feature selection optimized
using GA.

5. Experimental results and discussion448

In this section, we report a detailed benchmarking of our filter-wrapper hy-449

brid greedy ensemble approach on three high-dimensional biomedical datasets.450

We first describe the implementation setup, the working environment, and the451

validation procedure used. Then we discuss the parameter setup, their affect452

on the proposed system, and the performance of the proposed model, followed453

by its complexity analysis and training details. Finally, we elucidate on the454

implications of using our proposed hybrid ensemble in real-world biomedical455

applications.456

5.1. Experimental setup and validation457

To investigate the effectiveness of the proposed filter-wrapper hybrid greedy458

ensemble feature selection approach, we carried out a detailed benchmarking on459

17



Table 6: Parameters used in the proposed hybrid greedy ensemble approach.

Greedy parameter-wise
optimization

Genetic selection of
optimal parameters

ψ 1− 1.5 1− 10

τ 1− 10 1− 25

θ 0− 1 Dataset-specific

Scaling factor ψ: 0.1, τ : 2, and θ: 0.2 −
Pc and Pm − 0.6 and 0.1

three high-dimensional biomedical datasets (see Table 3). Experiments related460

to hybrid feature selection were performed on a PC with Intel Core i5 4×1.8461

GHz CPU with 8 GB RAM in the MAC 10.14 OS and the experiments related462

to parameter optimization were performed on a server with Intel Xeon 2×2.40463

GHz processor with 8 GB RAM and 1×TESLA C-2050 (3 GB memory). All464

the experiments were coded in Python 2.7 and Weka 3.8.3. All the experiments465

were carried out by 10-fold cross-validation, and the overall performance was466

estimated as the average across all folds. The biomedical datasets have adequate467

samples to aid in the creation of three stratified samples. Furthermore, two468

balanced (TIS [51] and Skin Cancer [63]) and one imbalanced (Seizure [5]) high-469

dimensional datasets were chosen for an unbiased evaluation of the proposed470

technique.471

Accuracy was used as the standard performance evaluation metric in this472

paper. Accuracy computes the average number of correct predictions over the473

given samples. Accuracy with Ytrue ground truth labels, Ypred predicted class474

labels, and I(x, y) indicator function that returns 1 only when x = y, can be475

defined as in Equation 9.476

Accuracy(Ytrue,Ypred) =
1

#samples

#samples∑
i=1

I(Ytruei ,Ypredi
) (9)

Furthermore, to simplify the evaluation, the accuracy computed for three477

classifiers used in this paper (RF, BDT, and KNN) were aggregated by averaging478

the individual accuracy scores.479

5.2. Parameter setup and performance benchmarking480

The ranges of the penalty parameters must be preset to facilitate the en-481

sembling of the base feature selection approaches in the most optimal way. The482

predetermined ranges were set with a higher τ range and comparably lower483

ψ range. A higher τ range was set to heavily penalize those less informative484

features that were not selected by the better performing base feature selection485

methods but were selected by methods with lower performance. Lower ψ range486

accounts for the possibility of selection from a base method with reduced di-487

mensions and comparable but lower performance. While the ranges of τ and ψ488
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Figure 4: The effect of ψ, τ , and θ on the proposed hybrid feature selection technique using
the Skin Cancer dataset [63].

can be set greedily by hillclimbing for an optimal range, θ is highly reliant on489

the overall scores of the features. The range of θ is set from the minimum of all490

overallScore values to the maximum of all overallScore values. In the case of491

greedy parameter-wise optimization, θ was set from 0.0 to 1.0 since this range492

was common to all the datasets used in this paper.493

In the case of greedy parameter-wise optimization, an empirical analysis494

was conducted to evaluate the variations in the accuracy with the change in495

the penalty parameters (ψ, τ , and θ). Figure 4 shows the variations in the496

hybrid feature selection accuracy on the Skin Cancer dataset [63] with respect497

to penalty parameters ψ ranging from 1 to 1.5 (increments of 0.1), τ ranging498

from 1 to 10 (increments of 2) and θ ranging from 0.0 to 1.0 (increments of 0.2)499

as a heat map.500

Table 75 and Table 85 present detailed insights into the empirical analysis501

performed on the Skin Cancer dataset [63] using greedy parameter-wise opti-502

mization. In Table 7 and Table 8 the parameters were greedily selected, starting503

with θ (varied from 0.0 to 1.0 (increments of 0.2)), followed by τ (varied from 1504

to 10 (increments of 2)), and ψ (varied from 1 to 1.5 (increments of 0.1)). The505

5fshyb denotes the proposed hybrid feature selection, fsnil denotes no feature selection, and
fs1 to fs5 denote the base feature selection methods in the order of cfsSubsetEval, mRMR,
oneRFeatureEval, corrFeatureEval, and igFeatureEval.
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Table 7: The effect of ψ, τ , and θ on the proposed hybrid feature selection technique using the Skin Cancer dataset [63].

ψ τ θ Number of selected features Classifier S3 accuracy (%)

fshyb fsnil fs1 fs2 fs3 fs4 fs5 fshyb fsnil fs1 fs2 fs3 fs4 fs5

1 1 0 275 2352 66 32 100 121 100 RF 71.5698 70.4014 70.1618 69.5626 70.9100 69.8322 69.0833
BDT 70.3116 69.7723 68.9934 69.2630 69.2930 68.9934 68.0348
KNN 66.1474 65.2187 62.4326 62.5225 65.3984 63.0917 62.8820

1 1 0.2 99 2352 66 32 100 121 100 RF 73.2217 70.4014 70.1618 69.5626 70.9100 69.8322 69.0833
BDT 71.2630 69.7723 68.9934 69.2630 69.2930 68.9934 68.0348
KNN 67.1216 65.2187 62.4326 62.5225 65.3984 63.0917 62.8820

1 1 0.4 64 2352 66 32 100 121 100 RF 71.2217 70.4014 70.1618 69.5626 70.9100 69.8322 69.0833
BDT 69.5630 69.7723 68.9934 69.2630 69.2930 68.9934 68.0348
KNN 65.5216 65.2187 62.4326 62.5225 65.3984 63.0917 62.8820

1 1 0.6 50 2352 66 32 100 121 100 RF 70.2217 70.4014 70.1618 69.5626 70.9100 69.8322 69.0833
BDT 69.2730 69.7723 68.9934 69.2630 69.2930 68.9934 68.0348
KNN 64.1216 65.2187 62.4326 62.5225 65.3984 63.0917 62.8820

1 1 0.8 34 2352 66 32 100 121 100 RF 69.9290 70.4014 70.1618 69.5626 70.9100 69.8322 69.0833
BDT 68.8472 69.7723 68.9934 69.2630 69.2930 68.9934 68.0348
KNN 63.8890 65.2187 62.4326 62.5225 65.3984 63.0917 62.8820

1 1 1 21 2352 66 32 100 121 100 RF 69.3829 70.4014 70.1618 69.5626 70.9100 69.8322 69.0833
BDT 68.5740 69.7723 68.9934 69.2630 69.2930 68.9934 68.0348
KNN 62.6423 65.2187 62.4326 62.5225 65.3984 63.0917 62.8820

1 2 0.2 98 2352 66 32 100 121 100 RF 73.2441 70.4014 70.1618 69.5626 70.9100 69.8322 69.0833
BDT 71.2700 69.7723 68.9934 69.2630 69.2930 68.9934 68.0348
KNN 67.1311 65.2187 62.4326 62.5225 65.3984 63.0917 62.8820

1 4 0.2 90 2352 66 32 100 121 100 RF 73.6821 70.4014 70.1618 69.5626 70.9100 69.8322 69.0833
BDT 71.4173 69.7723 68.9934 69.2630 69.2930 68.9934 68.0348
KNN 67.5230 65.2187 62.4326 62.5225 65.3984 63.0917 62.8820
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Table 8: The effect of ψ, τ , and θ on the proposed hybrid feature selection technique using the Skin Cancer dataset [63] (contd.).

ψ τ θ Number of selected features Classifier S3 accuracy (%)

fshyb fsnil fs1 fs2 fs3 fs4 fs5 fshyb fsnil fs1 fs2 fs3 fs4 fs5

1 6 0.2 80 2352 66 32 100 121 100 RF 74.1121 70.4014 70.1618 69.5626 70.9100 69.8322 69.0833
BDT 72.0360 69.7723 68.9934 69.2630 69.2930 68.9934 68.0348
KNN 67.9131 65.2187 62.4326 62.5225 65.3984 63.0917 62.8820

1 8 0.2 72 2352 66 32 100 121 100 RF 74.0230 70.4014 70.1618 69.5626 70.9100 69.8322 69.0833
BDT 71.8850 69.7723 68.9934 69.2630 69.2930 68.9934 68.0348
KNN 67.2371 65.2187 62.4326 62.5225 65.3984 63.0917 62.8820

1 10 0.2 70 2352 66 32 100 121 100 RF 73.5461 70.4014 70.1618 69.5626 70.9100 69.8322 69.0833
BDT 71.4010 69.7723 68.9934 69.2630 69.2930 68.9934 68.0348
KNN 66.7712 65.2187 62.4326 62.5225 65.3984 63.0917 62.8820

1.1 6 0.2 73 2352 66 32 100 121 100 RF 74.6113 70.4014 70.1618 69.5626 70.9100 69.8322 69.0833
BDT 72.3316 69.7723 68.9934 69.2630 69.2930 68.9934 68.0348
KNN 69.3110 65.2187 62.4326 62.5225 65.3984 63.0917 62.8820

1.2 6 0.2 70 2352 66 32 100 121 100 RF 74.0120 70.4014 70.1618 69.5626 70.9100 69.8322 69.0833
BDT 71.9162 69.7723 68.9934 69.2630 69.2930 68.9934 68.0348
KNN 68.7710 65.2187 62.4326 62.5225 65.3984 63.0917 62.8820

1.3 6 0.2 68 2352 66 32 100 121 100 RF 73.1211 70.4014 70.1618 69.5626 70.9100 69.8322 69.0833
BDT 70.9913 69.7723 68.9934 69.2630 69.2930 68.9934 68.0348
KNN 68.0110 65.2187 62.4326 62.5225 65.3984 63.0917 62.8820

1.4 6 0.2 64 2352 66 32 100 121 100 RF 72.5810 70.4014 70.1618 69.5626 70.9100 69.8322 69.0833
BDT 69.7113 69.7723 68.9934 69.2630 69.2930 68.9934 68.0348
KNN 67.8103 65.2187 62.4326 62.5225 65.3984 63.0917 62.8820

1.5 6 0.2 62 2352 66 32 100 121 100 RF 72.0180 70.4014 70.1618 69.5626 70.9100 69.8322 69.0833
BDT 69.4391 69.7723 68.9934 69.2630 69.2930 68.9934 68.0348
KNN 67.0410 65.2187 62.4326 62.5225 65.3984 63.0917 62.8820
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Table 9: Comparison of the average accuracies of the proposed hybrid feature selection tech-
nique optimized using GA (top ten chromosomes) over the base methods.

Dataset Chromosome S3 average accuracy (%)

ψ τ θ fshyb Base selection methods

TIS [51]

6.08 20.63 0.78 87.449
9.04 18.46 1.54 86.795
9.04 18.46 1.57 86.264 fsnil: 81.787
9.04 9.34 1.29 86.137 fs1: 83.506
1.05 24.06 0.58 85.592 fs2: 73.391
1.05 18.46 0.99 85.562 fs3: 80.153
8.12 24.06 0.58 85.434 fs4: 83.395
9.04 18.46 0.65 85.405 fs5: 83.948
9.04 9.34 0.80 85.337
9.04 24.06 0.25 85.068

Skin Cancer [63]

1.07 7.72 0.14 78.912
1.65 6.77 0.04 78.783
1.56 6.17 0.09 78.374 fsnil: 68.464
1.11 6.07 0.14 78.343 fs1: 68.534
1.28 6.77 0.04 78.323 fs2: 67.306
1.55 6.46 0.12 78.292 fs3: 66.667
1.24 6.67 0.03 78.253 fs4: 67.116
2.28 5.97 0.17 68.910 fs5: 67.196
1.07 11.87 0.24 67.860
1.07 20.72 0.24 67.312

Seizure [5]

1.39 2.58 0.01 51.811
1.31 3.09 0.43 50.822
1.62 5.96 0.19 49.422 fsnil: 47.131
1.16 2.30 0.33 48.517 fs1: 45.412
1.92 7.58 -0.05 47.663 fs2: 46.723
1.81 1.21 0.11 47.063 fs3: 45.988
1.38 8.78 0.20 46.818 fs4: 44.988
1.14 9.53 0.31 46.421 fs5: 45.858
1.40 9.05 0.41 46.322
1.45 9.91 0.41 46.158

threshold was varied initially, to find the best possible value which was then506

set throughout the analysis. A maximum average accuracy of 70.535% was507

obtained using ψ = 1, τ = 1, and θ = 0.2 (fix θ). Then, the feature penalty508

was varied to find the best possible value, which was then set. A maximum509

average accuracy of 71.354% was obtained using ψ = 1, τ = 6, and θ = 0.2.510

6Average of the runtime obtained using RF, BDT, and KNN classifiers.
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Figure 5: Comparison of the average accuracies of various feature selection methods across
different datasets.

Finally, the accuracy penalty was varied to find the best possible value. Thus, by511

changing the values of the penalty parameters within the preset range, 72.085%512

average accuracy (3.6% more than that for any predetermined feature selection513

method) was obtained with the penalty parameters ψ = 1.1, τ = 6, and θ = 0.2514

selected using greedy parameter-wise optimization. Also, it was observed that515

our proposed method took an average running time6 of 1.283 seconds while516

classification using all the features took 18.71 seconds.517

Figure 5 shows the superiority of the proposed hybrid greedy ensemble518

method optimized using GA, in terms of average accuracy over the base fea-519

ture selection methods, via empirical analysis. Also, it is interesting to note520

from Figure 5 that the samples (S2, S3) obtained from stratified sampling were521

very similar. Table 95 compares the accuracies obtained using various penalty522

parameters optimized by GA with the selected base selection techniques. The523

penalty parameters (chromosomes in GA) were varied in the range of 1 to 10 for524

ψ, 1 to 25 for τ , and minimum overallScore to maximum overallScore for θ. The525

minimum number of features to be selected was set to 0.1× the total number526

of features, i.e., the penalty parameters resulting in a hybrid feature subspace527

with less than the set minimum threshold of features were rejected. Note that528

all the top ten chromosomes for the TIS dataset [51], top eight (of ten) chromo-529

somes for the Skin Cancer dataset [63], and top five (of ten) chromosomes for530

the Seizure dataset [5] outperform the base selection methods. It can be noted531
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that using GA to optimize the penalty parameters produces higher accuracies in532

comparison to the results obtained using greedy parameter-wise optimization.533

This can be attributed to the fact that the swarm-intelligence based heuristic534

search is flexible and versatile, in the sense that they mimic the best features535

in the nature. It can be observed that the value of ψ must be kept relatively536

low while the value of τ must be moderately adjusted to obtain an optimal537

feature subset. This can be attributed to the fact that ψ aims at penalizing538

those base selection methods with lower S2 accuracy than that obtained using539

the entire feature space, while τ penalizes the features not selected by the better540

performing feature selection methods (S2 accuracy greater than that obtained541

using entire feature space). Higher accuracy penalty indicates rejection of the542

features from those base selection techniques with lower accuracy than that ob-543

tained with no feature selection, implying that that technique was of no use at544

all in reducing the feature space. It was observed that the optimization of the545

proposed ensemble using GA took 1.86 hours for TIS dataset [51], 2.31 hours546

for the Skin Cancer dataset [63], and 1.44 hours for the Seizure dataset [5].547

From Table 9 it can be noted that the proposed method, when optimized548

using GA outperforms the base methods by a maximum of 4.17% (3.5% higher)549

and at least by 1.34% (1.12% higher) for the TIS dataset [51], by a maximum550

of 15.14% (10.37% higher) and at least by 0.55% (0.38% higher) for the Skin551

Cancer dataset [63] and by a maximum of 9.93% (4.68% higher) and at least552

by 1.13% (0.53% higher) for the Seizure Dataset [5]. From the obtained results,553

the following two major trends were predominantly observed:554

• The genetic selection performs an exhaustive heuristic search leading to555

better optimization of the values of the penalty parameters as compared556

to the values obtained using greedy parameter-wise optimization.557

• A significantly lower value of the accuracy penalty (ψ) and a higher value558

of the feature penalty (τ) often leads to the optimal ensembling of base559

subspaces to produce the most informative feature subspace.560

The obtained results indicate the superiority and efficiency and robustness of561

our proposed hybrid greedy ensemble optimized using GA over the base selection562

techniques. Furthermore, the proposed greedy ensemble approach was compared563

with state-of-the-art prolific wrapper methods [57] including Recursive Feature564

Elimination (RFE) using SVM with linear kernel and RFE using SVM with565

Radial Basis Function (RBF) kernel [40]. We also compare our results with566

widely used filter selection approaches including feature importance using RF567

[70] and chi-square test [47]. Table 10 presents the superiority of the proposed568

ensemble optimized using GA over prolific filter and wrapper methods. RFE569

using SVM with linear kernel, feature importance using RF, and chi-square570

selection approaches were performed on sample S2 to retain 100 best features,571

while RFE using SVM with RBF kernel was programmed to retain about top572

10% of the features using sample S2. It can be observed that the proposed573

method outperforms prolific filter methods by 4% for the TIS dataset, 16.4%574

for the Skin Cancer dataset, and 11.2% for the Seizure dataset. Additionally,575
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Table 10: Comparison of the proposed hybrid greedy ensemble approach over state-of-the-art
prolific filter and wrapper selection approaches.

Dataset S3 average accuracy (%)

Filter approaches Wrapper approaches Proposed
greedy

ensemble

(GA)

Feature
importance

(RF)

Chi-
square

test

RFE using
SVM with

linear kernel

RFE using
SVM with
RBF kernel

TIS [51] 84.182 84.220 79.968 83.290 87.449

Skin Cancer [63] 67.356 67.794 67.307 67.375 78.912

Seizure [5] 46.601 46.299 46.818 50.450 51.811

it can be remarked that the proposed method also outperforms state-of-the-576

art wrapper methods by 5% for the TIS dataset, 17.12% for the Skin Cancer577

dataset, and 2.7% for the Seizure dataset.578

5.3. Computational complexity analysis579

Concerning the training of the proposed ensemble approach, the feature sub-580

spaces from various predetermined base selection methods must be computed581

apriori. Additionally, the genetic selection of the optimal penalty parameters582

must also be achieved apriori. With the prescient knowledge of the optimal583

penalty parameters and feature subspaces, the proposed hybrid approach en-584

sembles the subspaces greedily based on the penalty factors. Thus, the com-585

putational complexity of the proposed algorithm is heavily reliant on the com-586

plexity of obtaining predetermined feature subspaces (= O(fs)) and the genetic587

selection of the penalty parameters. It is interesting to note that the computa-588

tional complexity of the proposed method is significantly reduced by using filter589

selection methods as the base selection approaches. Furthermore, since the se-590

lection of features is performed on a sample of the high-dimensional dataset as591

opposed to the entire dataset, the computational cost is reduced further.592

To solve real-life optimization problems with less computational volume, an593

optimization or heuristic search strategy needs to be computationally feasible.594

To analyze the computational cost of the optimization strategy used in terms595

of worst-case computation time, the step-wise complexity analysis is performed.596

The initialization of a population of size P in GA is O(n · P ) ≈ O(P ) complex,597

where n (constant, 3 here) is the size of each chromosome. The fitness evaluation598

used in this study is the average of the accuracies obtained from RF, BDT,599

and KNN classifiers. Assume that computing the average accuracy using these600

classifiers takes O(fitness) time which is radically dataset dependent. Roulette-601

wheel measures the area covered by a chromosome in a given population P602

using the fitness scores. Every chromosome forms a part of the wheel with603

its slice size proportionate to its fitness score. Roulette-wheel selection can be604

achieved in O(P 2). Finally, crossover and mutation genetic operations take605

O(Pc · O(crossover)) and O(Pm · O(mutation)) times respectively. The GA606

optimization to find optimal penalty parameters is run for G iterations. Since607

P , G, Pc, and Pm are constant, the worst-case time complexity to optimize608
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penalty parameters simplifies to O(O(fitness) · (O(crossover) + O(mutation)))609

(= O(GA)). As a result, the worst-case time complexity of the proposed greedy610

ensemble using GA is O(O(fs) + O(fitness) + O(GA)). Note that O(fs) is on611

the sample S1, O(fitness) is on the sample S2, and O(GA) is on the sample S3.612

5.4. Effectiveness of the proposed greedy ensemble in real-world biomedical ap-613

plications614

The richness and variety of datasets available in the biomedical field have615

opened new horizons for researchers and investigators. The generated biomedi-616

cal big data inherits the curse of dimensionality as one of its characteristics. Ef-617

fective dimensionality reduction techniques emulate predictive capability while618

eliminating the noise and curtailing the computational complexity. Time and619

cost-effective approaches to select the most discriminative and informative fea-620

tures are indispensable, especially in the fields of bioinformatics and healthcare.621

The applicability of a feature selection technique to given data is heavily reliant622

on its ability to match the structure of the problem and maintain only those623

features that reveal the inherent patterns in the data. Thus there is a need to624

develop efficient techniques that aid in the optimal ensembling of such selection625

techniques for better performance aiding the decision-making process.626

The proposed greedy approach can be used to ensemble a variety of effec-627

tive selection approaches to generate an optimal feature subspace that cap-628

tures the inherent nature of the data. The weighted occurrence scheme and the629

penalty scheme used in the proposed approach aid in the appropriate selection of630

most informative features. Such an appropriate selection of features needed for631

clustering, classification, pattern extraction, and prediction of high-dimensional632

biomedical datasets with hundreds of attributes can be facilitated effectively633

using the proposed greedy ensembling approach. Furthermore, the proposed634

approach can prominently aid in the achievement of efficient analysis in various635

biomedical applications including the analysis of large volumes of genomic data636

produced daily due to the advancements in the sequencing technology. This is637

particularly vital as the selection of important genes is essential to discover the638

knowledge hidden within the genetic code and to identify significant biomarkers.639

The robustness and flexibility of the proposed approach facilitate the effective640

feature selection needed for a wide variety of healthcare applications including641

disease prediction, risk management, and others. The flexibility or the ability642

to work with any predetermined set of selection methods allows the proposed643

greedy approach to work effectively to match the problem structure aiding in644

effective feature selection.645

6. Sensitivity analysis646

The experimental results highlight the effectiveness and robustness of the647

proposed approach over the base selection methods. To further analyze the ob-648

tained results, a sensitivity analysis was performed. Sensitivity analysis helps649

in making decisions concerning more than a solution to the given problem [44].650

26



Table 11: Descriptive statistics of the proposed hybrid greedy ensemble approach across var-
ious datasets.

Dataset Minimum
value

Maximum
value

Mean Standard
deviation

TIS [51] 85.068 87.449 85.904 0.751

Skin Cancer [63] 67.312 78.912 75.336 5.063

Seizure [5] 46.158 51.811 48.102 1.993

Table 12: A paired samples Wilcoxon signed-rank test (two-tailed, p < 0.05) for the proposed
greedy ensemble against base selection methods across different datasets.

Dataset Selection
method

p−value z−value Null hypothesis
decision

Significant
difference

TIS [51]

None 0.00512 −2.8031 Reject Yes

igFeatureEval 0.00512 −2.8031 Reject Yes

corrFeatureEval 0.00512 −2.8031 Reject Yes

cfsSubsetEval 0.00512 −2.8031 Reject Yes

mRMR 0.00512 −2.8031 Reject Yes

oneRFeatureEval 0.00512 −2.8031 Reject Yes

Skin Cancer [63]

None 0.02202 −2.2934 Reject Yes

igFeatureEval 0.02202 −2.2934 Reject Yes

corrFeatureEval 0.00512 −2.8031 Reject Yes

cfsSubsetEval 0.00512 −2.8031 Reject Yes

mRMR 0.00512 −2.8031 Reject Yes

oneRFeatureEval 0.00512 −2.8031 Reject Yes

Seizure [5]

None 0.33204 −0.9683 Retain No

igFeatureEval 0.00512 −2.8031 Reject Yes

corrFeatureEval 0.09296 −1.6818 Retain No

cfsSubsetEval 0.00512 −2.8031 Reject Yes

mRMR 0.00512 −2.8031 Reject Yes

oneRFeatureEval 0.00512 −2.8031 Reject Yes

Sensitivity analysis measures the extent to which the optimal solution is sensi-651

tive to the change in the input to one or more parameters. The Kolmogorov-652

Smirnov test of normality revealed that the obtained results were not normally653

distributed. Thus, a non-parametric paired samples Wilcoxon signed-rank test654

at 5% significance level was employed to evaluate the significance of the pro-655

posed hybrid ensemble over the base selection methods across various datasets.656

The top ten chromosomes were used in the determination of the significance of657

the proposed approach over base selection methods as it was assumed that the658

optimal values would converge to the values of the top ten chromosomes after659

many finite cycles. Table 11 summarizes the statistical analysis of the proposed660

approach for top ten chromosomes in terms of accuracy (mean) and robustness661

(standard deviation).662

Table 12 shows the results of the paired samples Wilcoxon signed-rank test663

for the proposed greedy ensemble against conventional base selection methods.664

The null hypothesis claims no significant difference between the proposed greedy665
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approach and a base selection approach. When the significance is greater than666

5%, the null hypothesis is retained implying no significant improvement using667

the proposed hybrid approach. From Table 9 it can be observed that the pro-668

posed approach is significantly better than the base selection approaches except669

when the features of the Seizure dataset are all used or when they are selected670

using corrFeatureEval. All in all, the proposed hybrid greedy ensemble approach671

significantly outperforms the chosen base feature selection approaches.672

7. Conclusions, limitations, and future directions673

Feature selection in the field of biomedicine and bioinformatics is indispens-674

able. In this study, we proposed a penalty based filter-wrapper hybrid greedy675

ensemble approach to facilitate optimal feature selection. The proposed ap-676

proach greedily selects the features from the subspaces obtained from the pre-677

determined base selection methods. Specific performance dependent penalty678

parameters were used to penalize the base feature subspaces essential to achieve679

the optimal ensembling of those subspaces. At any point in time, only a strati-680

fied sample and not the entire dataset is not used for computation; the compu-681

tational complexity is significantly reduced. Furthermore, we leverage effective682

heuristic search strategies including the greedy parameter-wise optimization and683

the GA to obtain optimal values of the penalty parameters. Various applica-684

tions in the field of bioinformatics and healthcare were detailed. Experimental685

validation using three high-dimensional biomedical datasets proves the superior-686

ity (in terms of prediction accuracy), efficiency, and robustness of the proposed687

ensemble approach. The proposed approach is scalable and flexible as it can688

accommodate (by ensembling) a variety of feature selection approaches. Empir-689

ically, we showed that the proposed greedy approach outperformed the chosen690

base feature selection methods by 4.17% for the TIS dataset, by 15.14% for691

the Skin Cancer dataset and by 9.93% for the Seizure dataset. The proposed692

approach also outperformed prolific filter and state-of-the-art wrapper methods693

by a 5% for the TIS dataset, by 17.12% for the Skin Cancer dataset and by694

11.2% for the Seizure dataset.695

Although the proposed approach effectively enhances the feature selection,696

it has some limitations which call for further research on this topic. First, the697

proposed method requires the existence of a significant number of records in698

the dataset for precise sampling. Second, the proposed hybrid greedy ensemble699

approach introduces additional (penalty) parameters. These vital penalty pa-700

rameters require prior training to obtain the optimal setting in advance. Thus,701

parameter self-adaptive greedy ensemble or parameter-free greedy ensemble will702

be a prominent future research direction. Furthermore, we also aim at investi-703

gating the computational power of a hybrid of various metaheuristics including704

cuckoo search, firefly optimization, and GA which establishes an optimal balance705

between intensification and diversification.706
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biomedical data. Lékař a technika-Clinician and Technology, 48(1):29–35,806

2018.807

[31] Sung-Kyu Kim, Jin-Wu Nam, Je-Keun Rhee, Wha-Jin Lee, and Byoung-808

Tak Zhang. mitarget: microrna target gene prediction using a support809

vector machine. BMC bioinformatics, 7(1):411, 2006.810

[32] Jinyan Li and Huiqing Liu. Kent ridge bio-medical data set811

repository. Institute for Infocomm Research. http://sdmc. lit. org.812

sg/GEDatasets/Datasets. html, 2002.813

[33] Jinyan Li, Huiqing Liu, and Limsoon Wong. Mean-entropy discretized fea-814

tures are effective for classifying high-dimensional bio-medical data. In815

Proceedings of the 3rd International Conference on Data Mining in Bioin-816

formatics, pages 17–24. Springer-Verlag, 2003.817

31



[34] Tao Li, Chengliang Zhang, and Mitsunori Ogihara. A comparative study818

of feature selection and multiclass classification methods for tissue classifi-819

cation based on gene expression. Bioinformatics, 20(15):2429–2437, 2004.820

[35] Xiangtao Li and Minghao Yin. Multiobjective binary biogeography based821

optimization for feature selection using gene expression data. IEEE Trans-822

actions on NanoBioscience, 12(4):343–353, 2013.823

[36] Yong Liang, Cheng Liu, Xin-Ze Luan, Kwong-Sak Leung, Tak-Ming Chan,824

Zong-Ben Xu, and Hai Zhang. Sparse logistic regression with a l 1/2 penalty825

for gene selection in cancer classification. BMC bioinformatics, 14(1):198,826

2013.827

[37] Bo Liao, Yan Jiang, Wei Liang, Wen Zhu, Lijun Cai, and Zhi Cao. Gene828

selection using locality sensitive laplacian score. IEEE/ACM Transactions829

on Computational Biology and Bioinformatics (TCBB), 11(6):1146–1156,830

2014.831

[38] Quanjin Liu, Zhimin Zhao, Ying-Xin Li, and Yuanyuan Li. Feature selec-832

tion based on sensitivity analysis of fuzzy isodata. Neurocomputing, 85:833

29–37, 2012.834

[39] Quanjin Liu, Zhimin Zhao, Ying-xin Li, Xiaolei Yu, and Yong Wang. A835

novel method of feature selection based on svm. JCP, 8(8):2144–2149, 2013.836

[40] Quanzhong Liu, Chihau Chen, Yang Zhang, and Zhengguo Hu. Feature837

selection for support vector machines with rbf kernel. Artificial Intelligence838

Review, 36(2):99–115, 2011.839

[41] Shuangge Ma and Jian Huang. Penalized feature selection and classification840

in bioinformatics. Briefings in bioinformatics, 9(5):392–403, 2008.841

[42] Mustafa K Masood, Yeng Chai Soh, and Jiang, Chaoyang. Occupancy es-842

timation from environmental parameters using wrapper and hybrid feature843

selection. Applied Soft Computing, 60:482–494, 2017.844

[43] Ujjwal Maulik and Debasis Chakraborty. Fuzzy preference based feature se-845

lection and semisupervised svm for cancer classification. IEEE transactions846

on nanobioscience, 13(2):152–160, 2014.847

[44] Asma Meddeb, Nesrine Amor, Mohamed Abbes, and Souad Chebbi. A848

novel approach based on crow search algorithm for solving reactive power849

dispatch problem. Energies, 11(12):3321, 2018.850

[45] Fan Min, Qinghua Hu, and William Zhu. Feature selection with test cost851

constraint. International Journal of Approximate Reasoning, 55(1):167–852

179, 2014.853

[46] Melanie Mitchell. An introduction to genetic algorithms. MIT press, 1998.854

32



[47] Michal Moran and Goren Gordon. Curious feature selection. Information855

Sciences, 485:42–54, 2019.856

[48] Craig G Nevill-Manning, Geoffrey Holmes, and Ian H Witten. The develop-857

ment of holte’s 1r classifier. In Artificial Neural Networks and Expert Sys-858

tems, 1995. Proceedings., Second New Zealand International Two-Stream859

Conference on, pages 239–242. IEEE, 1995.860

[49] Jerzy Neyman. On the two different aspects of the representative method:861

the method of stratified sampling and the method of purposive selection.862

Journal of the Royal Statistical Society, 97(4):558–625, 1934.863

[50] Mykola Pechenizkiy, Alexey Tsymbal, and Seppo Puuronen. Local di-864

mensionality reduction and supervised learning within natural clusters for865

biomedical data analysis. IEEE Transactions on Information Technology866

in Biomedicine, 10(3):533–539, 2006.867

[51] Anders Gorm Pedersen and Henrik Nielsen. Neural network prediction of868

translation initiation sites in eukaryotes: perspectives for est and genome869

analysis. In Ismb, volume 5, pages 226–233. Citeseer, 1997.870

[52] Hanchuan Peng, Fuhui Long, and Chris Ding. Feature selection based on871

mutual information criteria of max-dependency, max-relevance, and min-872

redundancy. IEEE Transactions on pattern analysis and machine intelli-873

gence, 27(8):1226–1238, 2005.874

[53] Leif E Peterson. K-nearest neighbor. Scholarpedia, 4(2):1883, 2009.875

[54] Thu Zar Phyu and Nyein Nyein Oo. Performance comparison of feature876

selection methods. In MATEC Web of Conferences, volume 42, page 06002.877

EDP Sciences, 2016.878
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