
Artificial Intelligence Review manuscript No.
(will be inserted by the editor)

Applicability of Machine Learning in Spam and
Phishing Email Filtering: Review and Approaches

Tushaar Gangavarapu†,? · Jaidhar C.D.‡ ·
Bhabesh Chanduka‡

Received: 13 November, 2018 / Revised: 22 January, 2020 / Accepted: 29 January, 2020

Abstract With the influx of technological advancements and the increased sim-
plicity in communication, especially through emails, the upsurge in the volume of
Unsolicited Bulk Emails (UBEs) has become a severe threat to global security and
economy. Spam emails not only waste users’ time, but also consume a lot of net-
work bandwidth, and may also include malware as executable files. Alternatively,
phishing emails falsely claim users’ personal information to facilitate identity theft
and are comparatively more dangerous. Thus, there is an intrinsic need for the de-
velopment of more robust and dependable UBE filters that facilitate automatic
detection of such emails. There are several countermeasures to spam and phishing,
including blacklisting and content-based filtering. However, in addition to content-
based features, behavior-based features are well-suited in the detection of UBEs.
Machine learning models are being extensively used by leading internet service
providers like Yahoo, Gmail, and Outlook, to filter and classify UBEs successfully.
There are far too many options to consider, owing to the need to facilitate UBE
detection and the recent advances in this domain. In this paper, we aim at eluci-
dating on the way of extracting email content and behavior-based features, what
features are appropriate in the detection of UBEs, and the selection of the most
discriminating feature set. Furthermore, to accurately handle the menace of UBEs,
we facilitate an exhaustive comparative study using several state-of-the-art ma-
chine learning algorithms. Our proposed models resulted in an overall accuracy of

This is a post-peer-review, pre-copyedit version of an article published in Artificial Intelli-
gence Review. The final authenticated version is available online at: https://doi.org/10.
1007/s10462-020-09814-9.

?Corresponding author. (T. Gangavarapu completed most of this work at the National
Institute of Technology Karnataka, India.)

†Automated Quality Assistance (AQuA) Machine Learning Research, Content Experi-
ence and Quality Algorithms, Amazon.com, Inc., India.
E-mail: tusgan@amazon.com (T. Gangavarapu)

‡Department of Information Technology, National Institute of Technology Karnataka,
Surathkal, Mangaluru, 575025, India.

2 T. Gangavarapu et al.

99% in the classification of UBEs. The text is accompanied by snippets of Python
code, to enable the reader to implement the approaches elucidated in this paper.

Keywords Feature Engineering · Machine Learning · Phishing · Python · Spam

1 Introduction

Digital products and services increasingly mediate human activities. With the ad-
vent of email communication, unsolicited emails, in recent years, have become a
serious threat to global security and economy [11]. As a result of the ease of com-
munication via emails, a vast number of issues involving the exploitation of tech-
nology to elicit personal and sensitive information have emerged. Identity theft,
being one of the most profitable crimes, is often employed by felons to lure unsus-
pecting online users into revealing confidential information such as social security
numbers, account numbers, and passwords. Unsolicited emails disguised as coming
from legitimate and reputable sources often attract innocent users to fraudulent
sites and persuade them to disclose their sensitive information. As per the report
by Kaspersky Lab, in the first quarter of 2019, the menace of such unwanted emails
was responsible for 55.97% of traffic (0.07% more than that in the fourth quarter
of 2018). Unsolicited Bulk Emails (UBEs) can be broadly categorized into two
distinct yet related categories: spam and phishing.

Spam emails are essentially UBEs that are sent without users’ consent, primar-
ily for marketing purposes such as selling unlicensed medicines, illegal products,
and pornography [86]. The growth of spam traffic is a worrisome issue as such
emails consume a lot of network bandwidth, waste memory and time, and cause
financial loss. Phishing emails, on the other hand, are a much more serious threat
that involves stealing individuals’ confidential information such as bank details,
social security numbers, and passwords. Most of the phishing attacks are focused
towards financial institutions (e.g., banks); however, attacks against government
institutions, although not as targeted, cannot be overlooked [11]. To understand
the impact of phishing, consider pharming, a variant of phishing, where the at-
tackers misdirect users to fraudulent sites through domain name server hijacking
[2]. The effect of spam and phishing on valid users is multi-fold:

– Generally, UBEs promote products and services with little real value, pornog-
raphy, get-rich-quick schemes, unlicensed medicines, dicey legal services, and
potentially illegal offers and products.

– UBEs often hijack real users’ identities to send spam to other users (e.g.,
business email compromise scams such as email spoofing and domain spoofing
(≈ amounted to almost $1.3 billion in 2018 (20, 373 victims), which was twice
as much as that in 2017 (15, 690 victims) [1])).

– Phishing, in particular, involves identity theft as financial identity theft, crim-
inal identity theft, identity cloning, or business/commercial identity threat.

– Mailing efficiency and recipient’s productivity are drastically affected by UBEs.

A study by the McKinsey Global Institute revealed that an average person
spends 28% of the workweek (≈ 650 hours a year) reading and responding to
emails [28]. Additionally, research on SaneBox’s internal data revealed that only
38% of the emails on an average are relevant and important [28], equivalent to ≈
11% of the workweek. Furthermore, a study by the Danwood Group found that it

Machine Learning in UBE Filtering: Review and Approaches 3

takes an average of 64 seconds to recover from an email interruption and return
to work at the rate before the interruption [28]—adversely affecting the recipients’
productivity, especially in the case of irrelevant UBEs. Based on the Kaspersky
Lab report, in 2015, the UBE email volume fell by 50% for the first time since 2003
(≈ three to six million). Such decline was attributed to the reduction (in billions)
of major botnets responsible for spam and phishing. Conversely, by the end of
2015, the UBE volume escalated. Furthermore, Kaspersky spam report revealed
an increase in the presence of pernicious email attachments (e.g., malicious macros,
malware, ransomware, and JavaScript) in the spam email messages. By the end of
March 2016, the UBE volume (≈ 22, 890, 956) had quadrupled in comparison with
that witnessed in 2015. In 2017, the Internet Security Threat Report (ISTR) [84]
estimated that the volume of spam emails had skyrocketed to an average of 55% (≈
2% more than that in 2015 (52.7%) and 2016 (53.4%)). Clearly, spam and phishing
rates are rapidly proliferating. The overall phishing rate in 2017, according to the
ISTR [84], is nearly one in every 2, 995, while the number of Uniform Resource
Locators (URLs) related to phishing rose by 182.6%, which accounted for 5.8%
(one in every 224) of all malicious URLs.

Over the years, extensive research in this domain revealed several plausible
countermeasures to detect UBEs. Approaches such as secure email authentication
result in high administrative overload and hence, are not commonly used. Ma-
chine learning and knowledge engineering are two commonly used approaches in
filtering UBEs. In knowledge engineering, UBEs are classified using a set of pre-
defined rules. However, knowledge engineering approaches require constant rule
updation to account for the dynamic nature of the UBE attacks—often suffer from
scalability issues. In machine learning approaches, the algorithm itself learns the
classification rules based on a training set—determining the email type through
the analysis of the email content and structure has emerged, owing to the success
of AI-assisted approaches in UBE classification. This area of research is actively
being developed to account for the dynamic nature of UBE attacks. Past works
in the existing literature explore several informative features, and many machine
learning algorithms have been developed and utilized to classify the incoming mail
into junk and non-junk categories [86,19,85,58,27,79]. Many leading internet ser-
vice providers including Yahoo mail and Gmail, employ a combination of machine
learning algorithms such as neural networks, to handle the threat posed by UBE
emails effectively. Since machine learning models have the capacity to adapt to
varying conditions, they not only filter the junk emails using predefined rules
but also generate new rules to adapt to the dynamic nature of the UBE attack.
Despite the success, adaptability, and predictability of machine learning models,
preprocessing, including feature extraction and selection plays a critical role in
the efficacy of the underlying UBE classification system [87,57]. Thus, there is
a need to determine the most discriminative and informative feature subset that
facilitates the classification of UBEs with a higher degree of confidence.

Due to the vast heterogeneity in the existing literature, there is no consen-
sus on which features form the most informative and discriminative feature set.
Moreover, to the best of our knowledge, only a few works have evaluated all the
possible set of features and provided insights on the importance of a feature con-

4 T. Gangavarapu et al.

cerning the classification of UBEs1. In this paper, we aim at providing an acces-
sible tutorial to security analysts and scientists seeking to avail benefits from the
existing email data. First, we elucidate on the way of extracting vital and informa-
tive features (after extensive experimentation, we resorted to the features devised
in the seminal work by Toolan and Carthy [86], to achieve high performance in
real-time) from the email corpus. Then, we present six prolific and widely used fea-
ture selection (extraction) methods including Variance-based filtering (LowVar),
Correlation-based filtering (HighCorr), Feature Importance based filtering (FI),
Minimum Redundancy Maximum Relevance (mRMR), and Principal Component
Analysis (PCA)2, to determine an optimal feature subspace that facilitates effec-
tive learnability and generalizability of the underlying machine learning models,
thus impacting the predictability of UBEs. Finally, we evaluate the obtained op-
timal feature subspace using eight state-of-the-art machine learning algorithms
including Näıve Bayes (NB), Support Vector Machines (SVM), Bagged Decision
Trees (BDT), Random Forest (RF), Extra Trees (ET), AdaBoost (AB), Stochastic
Gradient Boosting (SGB), and Voting Ensemble (VE). The key contributions of
this paper are mainly four-fold:

– We discussed the extraction of critical and potential email features with dis-
criminative capabilities concerning UBEs, through the analysis of both email
body-content and structure.

– We leveraged several prolific feature selection (extraction) approaches to engen-
der an optimal informative feature subspace that enables effective and accurate
UBE detection and classification.

– We present an extensive comparative study to elucidate on the applicability,
learnability, and generalizability of several state-of-the-art machine learning
models in facilitating UBE filtering and classification.

– To enhance the understanding of the readers, we exposed them to several
feature selection and machine learning algorithms through snippets of Python
code, enabling them to avail benefits from the existing email data.

The rest of the paper is organized as follows: Section 2 presents an overview of
the existing works, and reviews their advantages and limitations, while Section 3
presents the background discussion. Section 4 elucidates on the steps employed in
the process of feature extraction from emails, feature selection from the extracted
email data, and understanding the importance of a feature with respect to UBEs.
The machine learning algorithms employed in the UBE classification are presented
in Section 5. In Section 6, we evaluate the obtained feature subspaces using several
machine learning algorithms. Finally, Section 7 summarizes this paper with future
enhancements.

1 We experimented with advanced content-based features and topics extracted using
Doc2Vec and hierarchical Dirichlet process. However, Doc2Vec style textual features and
Dirichlet topics did not enhance in the predictability of the underlying machine learning mod-
els, owing to the similar content writing style of ham and UBE emails. The discriminative
features in the email body-content, including the presence of phrases like ‘verify your account,’
have been considered in this study.

2 Note that PCA facilitates feature extraction (through a linear transformation) rather than
feature selection.

Machine Learning in UBE Filtering: Review and Approaches 5

2 Related Work

Utilizing AI-assisted approaches for UBE detection and classification has become
a prominent area of global research interest. This section aims at reviewing some
of such existing techniques which were utilized in the development and evaluation
of a potential set of features in the classification of spam and phishing emails, and
to provide an overview of the existing modeling strategies.

Lueg [54] presented a brief survey exploring the way of applying information
retrieval and information filtering mechanisms to postulate spam filtering in a
theoretically grounded and logical way. Although the author aimed at introduc-
ing an operationally efficient spam detector, the presented survey did not detail
the simulation tools, machine learning approaches, or the datasets utilized. Wang
[91] reviewed several approaches of detecting spam emails, categorized unsolicited
spam emails into hierarchical folders, and facilitated automatic regulation of the
tasks concerning the response to an email. However, the author did not cover
any machine learning approaches. Chandrasekaran et al. [19] published a seminal
work in the UBE detection and classification, and their work introduced and em-
ployed structural email features such as the content richness and the number of

Table 1 Summary of some key past works that employed machine learning to facilitate UBE
classification.

Work Approach(es) Classifier(s) Feature
selection

Highlight(s) Remark(s)

Pan and
Ding [66]

Phishing detector that examines
the inconsistency in a website’s
identity, its HTTP transactions,
and DOMa properties

SML χ2 Phishing-
independent
anti-phishing
scheme with a low
miss rate

Use of
heterogeneous
features; high
computation time
and cost

Toolan and
Carthy [86]

Set of 40 potential features from
a corpus of over 10, 000 emails
were generated to detect UBEs

C5.0
DT

IG A detailed
evaluation of the
possible features

Only employs IG
to evaluate the
importance of the
features

Khonji et
al. [48]

Enhancing the classification
accuracy using an effective
feature subset based on all the
previously proposed features

RF CFSb,
WFSc,
IG

Evaluates various
feature selection
techniques

Relies on only a
limited number of
classifiers

Zhuang et
al. [100]

Detection model with several
phases: feature extraction,
training, ensemble classification,
and cluster training

SML Maximum
relevance

Better
performance in
comparison to
commonly used
tools and methods

Complex
computations
involving
redundant features

Hamid et
al. [37]

Ensemble multi-tier detector
that uses clustering to weigh
features and profile the best
(high weighted) features

SMO,
AB

IG More efficient than
the modified
global K−means
approach

Irrelevancy,
redundancy, and
scalability issues;
high computation
time

Hassan [40] Embedded feature selection
algorithm to analyze the
features and mitigate
redundant and irrelevant ones

SML,
SMO,
DT,
NB

CFSb,
FSC,
WFSc,
FFSd

Higher accuracy,
and low FPR and
FNR with DT
classifier

Greedy approach
and might not
always work

aDocument Object Model ; bCorrelation-based Feature Selection; cWrapper-based Feature Selection;
dFilter-based Feature Selection.

6 T. Gangavarapu et al.

functional words (e.g., bank, credit, and credit) to discriminate phishing emails
from legitimate ones. They used an SVM classifier to detect phishing emails and
prevent them from reaching the user’s inbox, thus reducing any possible human
exposure. The work by Zhong et al. [99] chronicled an innovative spam filtering
approach that ensembled several filters. Abu-Nimeh et al. [2] compared the accura-
cies of classifying 2, 889 emails using Supervised Machine Learning (SML) models
including SVM and RF using 43 potential features. The authors showed that RF
classifier outperformed several other classifiers (low error rate). Despite the novelty
and inventiveness in these works [19,99,2], they did not benchmark their approach
against the recent works.

In 2008, Cormack [23] explored the relationship between email spam detec-
tors and spam detectors in storage media and communication, with emphasis on
the efficiency of the proposed methods. Furthermore, the characterization of email
spams (e.g., users’ information requirements) was scrutinized by the author. How-
ever, the work lacked detailing of certain vital components of spam filters. Sanz et
al. [77] detailed the issues concerning UBE research, the effects of such issues on
the users, and the ways of reducing such effects. Their research work elucidated
on several machine learning algorithms utilized in UBE detection. However, their
work lacked a comparative analysis of various content filters. Ma et al. [55] used a
set of orthographic features to achieve an automatic clustering of phishing emails,
which resulted in greater efficiency and better performance via Information Gain
(IG) with C4.5 Decision Tree (DT). They used the modified global K−means ap-
proach to generate the objective function values (over a range of tolerance values),
for selected feature subsets, which assisted in recognition of clusters. Toolan and
Carthy [85] used a recall-boosting ensemble approach which was based on C5.0
DT, and instance-based learning ensemble techniques to reclassify emails that were
classified as non-phishing by C5.0 DT. They obtained a good precision through
the use of C5.0 DT and 100% recall from the ensemble. Gansterer and Pölz [33]
proposed a system of filtering the incoming emails into ham, spam, and phishing,
based on Feature Selection by Category (FSC), which provided better (97%) clas-
sification accuracy (ternary classification) than that resulted from the use of two
binary classifiers.

Basnet and Sung [10] proposed a method of detecting phishing emails through
the use of confidence-weighted linear classifiers. The authors only utilized the email
contents as features and neglected the use of any heuristic-based phishing specific
features. A prominent work in the field of phishing email filtering was presented
by Bergholz et al. [11], where the authors described several novel features includ-
ing statistical models for email topic descriptions, email text and external link
analysis, and the analysis of embedded logos concerning hidden salting. Dhanaraj
and Karthikeyani [25] studied and developed approaches premeditated to mitigate
email image spam. Despite the creativeness in designing image-based methods,
their work did not elucidate on the machine learning models or the utilized corpus.
Zhang et al. [97] developed an automatic detection approach specific to Chinese
e-business websites by using the URL and website-content specific features. The
authors employed four machine learning classifiers including RF, Sequential Min-
imum Optimization (SMO), logistic regression, and Näıve Bays (NB), and evalu-
ated their results using Chi-squared statistics (χ2). Laorden et al. [52] explained
the importance of anomaly discovery in UBE filtering in reducing the requirement
of classifying UBEs. Their work reviews an anomaly-based UBE sieving approach

Machine Learning in UBE Filtering: Review and Approaches 7

which utilized a data minimization approach that reduced preprocessing while
maintaining the information about email message appropriateness concerning the
email nature. Table 1 reviews other related and significant past works in the de-
tection of spam and phishing emails.

More recently, many works aimed at studying the applicability of different
machine learning approaches including K-Nearest Neighbors (KNN), SVM, NB,
neural networks, and others, to spam and phishing email filtering, owing to the
ability of such approaches to learn, adapt, and generalize. In 2016, a broad overview
of some of the state-of-the-art content-based UBE filtering approaches was pre-
sented by Bhowmick and Hazarika [13]. Their work surveyed several vital concepts
in UBE filtering, the effectiveness of the current efforts, and recent trends in UBE
classification, while focusing on popular machine learning approaches for the de-
tection of the nature of an email. Moreover, they discussed the changing nature
of UBE attacks and examined several machine learning algorithms to combat the
menace of such emails. In 2017, Sah et al. [74] proposed a model to effectively
detect the malicious spam in emails through effective feature selection, followed
by classification using three machine learning approaches including NB, SVM, and
Multi Layer Perceptron (MLP). With the promising success of deep neural archi-
tectures in various applications [31,45], some of the recent works have employed
deep learning models to classify UBEs. Apruzzese et al. [6] evaluated the applica-
bility, effectiveness, and current maturity of deep and machine learning models in
the detection of malware, intrusion, and spam. The authors concluded that utiliz-
ing different machine learning classifiers to detect specific tasks can increase the
UBE detection performance; however, they drew no significant conclusions con-
cerning deep neural models. Hassanpour et al. [41] modeled the email content as
Word2Vec style features and classified them using several deep learning classifica-
tion approaches—the authors achieved an overall accuracy of 96%. Vorobeychik
and Kantarcioglu [90] used adversarial machine learning to generate email sam-
ples and trained the classifier to distinguish those generated samples, making the
learning model robust to adversarial manipulation and decision-time attacks. The
authors concluded with a note on several issues concerning adversarial modeling
that warrant further research. More prominent and impactful research works in
the domain of UBE detection and filtering are tabulated in Table 2.

Some of the works presented in Table 2 employed feature-free approaches to
facilitate spam and phishing detection. However, such approaches suffer from high
computational complexity and cost of training. Some research works considered
email header, subject line, and body as the most prominent features in classifying
UBEs. However, it is worth noting that, suspicious email header, subject line, and
body could be misleading, and behavior-based email features could be essential
to facilitate accurate classification of UBEs. Most of the researchers focused on
the classification performance in terms of classification accuracy. This work differs
from the efforts of previous works by revisiting various state-of-the-art machine
learning approaches for UBE classification. We employ feature selection to kindle
an optimal feature subspace to lower the computational complexity and enhance
the classification performance. Additionally, we present several key performance
indicators other than classification accuracy to assess the performance of the un-
derlying models accurately. Furthermore, we present an accessible tutorial to se-
curity specialists through snippets of Python code that is intended on exposing
them to the presented feature selection and machine learning algorithms.

8 T. Gangavarapu et al.

Table 2 Summary of some key existing works in the field of UBE detection and filtering.

Work Approach(es) Compared algorithm(s) Remark(s) Dataset(s) Evaluation
metric(s)

Zhao and
Zhang [98]

Rough set classifier to
incorporate fuzziness and
uncertainty

NB and rough set Low performance Spambase Accuracy, precision,
and recall

Norte Sosa
[63]

Forward search feature selection
with MLP as the classifier and
five-fold double classification

− No comparison of
performance

Collected
emails (2, 200)

Accuracy

Mousavi and
Ayremlou
[59]

Classification using NB − No comparison of
performance

Collected
emails

Precision and recall

Awad and
ELseuofi [9]

Classification using NB, KNN,
MLP, SVM, rough sets, and
artificial immune system

NB, KNN, MLP, SVM, rough set,
and artificial immune system

State-of-the-art
UBE classification
approaches were
neglected

SpamAssassin Accuracy, precision,
and recall

Choudhary
and Dhaka
[21]

Automatic classification using
the genetic algorithm

− No comparison of
performance

Words in a
data dictionary

−

Shrivastava
and Bindu
[82]

Classification using the genetic
algorithm with a heuristic fitness
function

− No comparison of
performance

Collected
emails (2, 248)

Accuracy

Bhagyashri
and Pratap
[12]

Classification using NB − No comparison of
performance

SpamAssassin Accuracy, precision,
and recall

Akinyelu
and
Adewumi [3]

RF Compared with [27] Inadequate
evaluation metrics
to estimate the
efficacy of the
proposed approach

Collected
emails (2, 000)

False positives and
negatives

Idris and
Mohammad
[43]

Classification using artificial
immune system

− Lack of standard
evaluation metrics
for performance
evaluation

Datasets from
UCI
repositories

False positive rate

Sharma et
al. [81]

Classification using MLP Low performance NB and MLP TREC 07 Accuracy, precision,
and recall

Dhanaraj
and
Palaniswami
[24]

Classification using firefly and
NB

NB, firefly, particle swarm
optimization, and neural networks

Low performance CSDMC 2010 Accuracy,
sensitivity, and
specificity

Kumar and
Arumugan
[51]

Particle swarm optimization for
feature selection and
probabilistic neural network for
classification

NB, probabilistic neural network,
and BLAST

Low performance Collected
emails

Sensitivity and
specificity

Renuka et
al. [72]

Classification using genetic
algorithm with NB and ant
colony optimization with NB

Genetic algorithm with NB and ant
colony optimization with NB

No performance
improvement

Spambase Accuracy, precision,
recall, and
F-measure

Karthika
and
Visalakshi
[47]

Classification using the hybrid of
ant colony optimization and
SVM

NB, KNN, and SVM Very low
performance

Spambase Accuracy, precision,
and recall

Awad and
Foqaha [8]

Classification using the hybrid of
particle swarm optimization and
radial basis function neural
networks

Particle swarm optimization, MLP,
neural networks, and radial basis
function neural networks

High model build
time

Spambase Accuracy

Sharma and
Suryawanshi
[80]

KNN classification with
Spearman’s rank-order
correlation

KNN classification with Spearman’s
rank-order correlation and KNN
classification with Euclidean
distance

Low performance Spambase Accuracy, precision,
recall, and
F-measure

Alkaht and
Al-Khatib
[4]

Classification using multi-stage
neural networks

MLP and neural networks High training time Collected
emails

Accuracy

Palanisamy
et al. [65]

Classification using negative
selection and particle swarm
optimization

NB, SVM, particle swarm
optimization, and negative selection
algorithm

High training time Ling Accuracy

Zavvar et al.
[96]

Classification using SVM, neural
networks, and particle swarm
optimization

KNN, SVM, particle swarm
optimization, and self organizing
map

No comparison of
performance

Spambase AUROC

Tyagi [88] Classification using deep neural
networks

Dense MLP, deep belief networks,
and stacked denoising autoencoder

High training time Enron, PU1,
PU2, PU3, and
PUA

Accuracy, precision,
recall, and
F-measure

Rajamohana
et al. [71]

Classification using adaptive
binary flower pollination
algorithm

Binary particle swarm optimization,
shuffled frog leaping algorithm, and
adaptive binary flower pollination
algorithm for feature selection, and
NB and KNN for classification

Lack of standard
evaluation metrics
for performance
evaluation

Dataset in [64] Global best
positions

Machine Learning in UBE Filtering: Review and Approaches 9

3 Background

Certain email features (e.g., keywords such as debit, verify, and account) are more
prominent in UBEs than in ham emails, and by measuring the rate of occurrence
of such features, we can ascertain the probabilities for those email characteristics
which in turn aids in the determination of the email type. The existing literature
presents a wide variety of techniques to determine and utilize such discriminative
features, and in this section, we describe the different categories of UBE filtering
approaches widely used to overcome the menace of such emails. We also elucidate
on the UBE filters widely used by popular internet service providers to curtail the
dangers posed by email-borne malware, phishing, and malware in UBEs.

3.1 Categorization of the Existing UBE Filtering Techniques

Over the years, academicians and researchers have proposed various UBE detection
and filtering approaches which have been utilized successfully to classify email data
into groups. These approaches can be broadly categorized into: content-based and
behavior-based filters, sample base or case base filters, rule-based or heuristic
filters, previous likeness based filters, and adaptive filters.

3.1.1 Content-based and Behavior-based Filters

Content-based and behavior-based UBE filtering approaches aim at analyzing the
email content and structure to create automatic classification rules using ma-
chine and deep learning approaches such as KNN, NB, MLP, and neural networks.
Content-based and behavior-based filters analyze the tokens (words), their distri-
bution, their occurrences and co-occurrences, in addition to the analysis of scripts
and URLs, in the context of emails, and then utilize the learned knowledge to
generate rules to facilitate automatic filtering of incoming UBE emails [22].

3.1.2 Sample Base or Case Base Filters

Sample base or case base filtering techniques are popular in spam and phishing
email filtering. Through an email collection model, all the emails, including ham,
spam, and phishing, are extracted from every user’s email. Then, preprocessing of
the raw email data into a machine-processable form is facilitate through feature
selection (extraction) and grouping the email data. Finally, the preprocessed data
is mapped into distinct UBE categories, and a machine learning algorithm is em-
ployed to train the existing email data. The trained models are then tested on the
incoming emails to categorize them into ham, spam, or phishing [22].

3.1.3 Rule-based or Heuristic Filters

Rule-based or heuristic UBE filtering approaches (e.g., SpamAssassin [56]) utilize
the existing heuristics or rules to assess several patters (specifically, regular ex-
pressions) against an incoming email message—the score of an incoming email is
reliant on the number of patterns in the email message (when the patterns in the

10 T. Gangavarapu et al.

email message do not correspond to the preset regular expressions, the score is re-
duced). The UBE emails are then filtered using a specific predetermined threshold.
While certain heuristics do not change over time, other heuristics require constant
updating to cope with the changing and dynamic nature of the UBE emails [22].

3.1.4 Previous Likeness based Filters

Previous likeness based UBE filtering approaches utilize instance-based or memory-
based machine learning approaches to classify the incoming email messages based
on their likeness and resemblance to the stored training sample emails. A multi-
dimensional vector is created using the attributes of the sample emails, which is
then used to plot new instances. A new instance is mapped to a target class using
the most common class among the K-nearest neighbors of the point [76]. Finally,
the KNN classifier is employed to classify the incoming email messages.

3.1.5 Adaptive Filters

Adaptive UBE filtering approaches facilitate the detection and classification of
UBEs by categorizing emails to distinct groups. In this approach, the email corpus
is segregated into several groups, and each group poses an emblematic text. The
similarity between an incoming email and a particular group determines the email
message score with respect to that particular group. The scores computed across
all the groups are utilized in deciding the most probable group concerning the
incoming email message [69].

3.2 UBE Filters: How Yahoo mail and Gmail Filter UBEs

Leading internet service providers including Yahoo mail and Gmail have employed
several machine learning approaches such as neural networks, to handle the threat
posed by UBEs effectively. Recent research revealed that the machine learning
model employed by Google facilitates the detection of UBEs with 99.9% classifi-
cation accuracy—one in a thousand email messages succeeds in evading the UBE
filter in Gmail. To account for the considerable UBE volume (≈ 50%-70% of the
emails), the UBE detection models developed by Google incorporate Google safe
browsing tools to identify websites with malicious URLs. The performance of UBE
filtering is enhanced further through additional, comprehensive scrutiny of phish-
ing emails. Such more in-depth examination causes additional delay; however, only
0.05% of the emails are subject to such delay. Further details on the email UBE fil-
ters employed by popular internet service providers are presented in the following
subsections.

3.2.1 Yahoo Mail UBE Filtering

Yahoo mail is one of the first free webmail service providers with more than 320
million users. Yahoo mail utilizes several algorithms and a combination of meth-
ods rooted in basic techniques, including spam and email content users’ complaints
and URL filtering. The email provider employs email filtering by domains rather

Machine Learning in UBE Filtering: Review and Approaches 11

than by IP addresses. Furthermore, Yahoo mail provides ways of preventing a valid
internet user for being mistaken for a cybercriminal (e.g., ability to troubleshoot
SMTP errors using SMTP logs). The complaint feedback loop service helps users
maintain trust in the services and UBE filtering approaches employed by Yahoo
mail. Moreover, the email service provider also facilitates Yahoo whitelisting (re-
turn path certification and internal whitelisting)—whitelisting rolls back to the
user to specify the list of senders to receive email messages from (placed in a list
of trusted users), unlike in blacklisting. The service user can employ a combination
of Yahoo’s spam-fighting techniques along with whitelisting to reduce the volume
of legitimate emails being erroneously classified as unsolicited emails. Whitelisting
alone can result in a strict implication on unapproved senders, in which case, Yahoo
mail utilizes an automatic whitelisting procedure, where the anonymous sender’s
address is checked against a database for any history of spamming or phishing—if
the unapproved user has no record of cyber attacking, the email message is sent
to the recipient, and the user’s email is added to the whitelist.

3.2.2 Gmail UBE Filtering

Google mail employs hundreds of rules to determine the nature of an incoming
email—each rule depicts a specific feature or aspect of a UBE with some statisti-
cal value which is reliant on the likelihood that a particular feature corresponds to
UBEs. The weighted importance of the features is utilized to determine the final
score for an incoming email message. The score is measured against a sensitivity
threshold determined using each user’s UBE filter, and consequently, an incoming
email is classified as ham or unsolicited. Unlike Yahoo mail, Gmail filters email
messages by IP addresses rather than by domains. To facilitate accurate classifica-
tion of UBEs, Gmail utilizes state-of-the-art machine learning algorithms including
neural networks and logistic regression. Additionally, to shield Gmail users from
any possible image UBEs, Google utilizes optical character recognition. Further-
more, the UBE filtering by Gmail is greatly enhanced by linking several features
through the use of machine learning algorithms utilized in combining and ranking
large sets of Google search results. Factors like links in the email message headers
and domain reputation depict the evolving and dynamic nature of the UBEs over
time—due to these factors, legitimate emails could be classified as UBEs. With
the emergence of state-of-the-art algorithms, tools, users’ feedback, and new UBE
discovery, the filtering settings are updated continuously.

4 Methods: Feature Extraction and Selection

In this section, we focus on describing the way of processing the raw email data3

based on forty discriminative features devised by Toolan and Carthy [86], to facil-
itate the detection of spam and phishing emails. Moreover, we elucidate on deter-
mining the importance of a feature concerning the features of UBEs. The following
subsections give tactful insights on the entire procedure employed as a part of fea-
ture engineering, which deals with the process of transforming raw email data into
informative and discriminative features that better represents the underlying email

3 The email data utilized in this research can be found at https://goo.gl/gkuJ2g.

12 T. Gangavarapu et al.

Table 3 Summary of the email corpora utilized in this study.

Dataset Rate of ham Rate of UBE Year of
creation

Reference

SpamAssassin 83.6% 16.4% 2002 Apache SpamAssassin [56]

Phishing corpus − 100% 2015-16 Nazario [61]

corpus. Such representations aid the classification models to learn, adapt, and gen-
eralize, which is essential in the accurate classification of unseen email instances.
The entire workflow of the procedure employed to draw informative inferences
from the raw email data is depicted in Fig. 1. The text is accompanied by snippets
of Python code to familiarize the readers with the methods utilized in this study.
The code is aimed at readers with Python familiarity, more resources concerning
the same can be found at https://www.python.org/about/gettingstarted/.

4.1 Materials: Raw Email Corpus

Most of the existing publicly available datasets including spam archive [5], Biggio
[14], phishing corpus [2], and Princeton spam image benchmark [92] are lopsided
towards UBE detection—the volume of UBEs utilized in evaluating the filter is
much greater than that of ham emails, resulting in the machine learner recording
a higher accuracy by concentrating solely on detecting UBEs, which might not
scale well with the real-world data. Hence, a more suitable dataset is the one with
near equal volumes of ham and non-ham emails, thus facilitating the underlying
machine learner to learn and discriminate between ham emails and UBEs. The
raw email data used in this paper consists of around 3, 844 emails in total, which
is comprised of 2, 551 ham emails (≈ 66.4%), 793 phishing emails (303 from 2015
and 490 from 2016, contributing to ≈ 20.6%), and 500 spam emails (≈ 13%).
These emails were collected from a variety of sources4—the spam and ham emails

4 Note that the individual corpus possesses highly distinctive qualities that are indicated
through the experiments conducted on that specific corpus.

Email preprocessing
(Mbox to XML)

Data collection
(emails, Mbox)

Preprocessing Feature
extraction

Feature selection
(extraction)

Machine learning
algorithm

Email type
(ham or UBE)

Feature engineering

Data sources

Fig. 1 An overview of the procedure employed to draw inferences from the collected data.

Machine Learning in UBE Filtering: Review and Approaches 13

Block 1 An example test email that contains most of the spam and phishing email features.

1 From tushaar@nitk.edu.in Fri Sep 22 11:04:35 2017
2 Return -Path : <tushaar@nitk.edu.in>
3 Delivered -To: test@localhost.examples.com
4 Received : from localhost [127.0.0.1]
5 by localhost with POP3 (fetchmail -5.8.8)
6 for test@localhost (single -drop);
7 Fri , 22 Sep 2017 11:07:38 +0200 (EDT)
8 Received : from emztd2202.com ([68.85.145.178])
9 by webnotes.net (7.8.4/7.8.4) with SMTP id KAA08354

10 for <test@examples.com >;
11 Fri , 22 Sep 2017 10:14:09 +0200
12 Message -Id : <200206230815. KAA08354@webnotes.net >
13 From : "Tushaar Gangavarapu" <tushaar@nitk.edu.in>
14 Reply -To : 15 it117.tushaar@nitk.edu.in
15 To : test@examples.com
16 Date : Fri , 22 Sep 2017 10:12:41 -0800
17 Subject : Re: Example of .eml format
18 X-Mailer : Microsoft Outlook Express 5.01.2818.6800 DM
19 MIME -Version: 1.0
20 Content -Type: text/html; charset ="us -ascii"
21 X-MIME -Auto
22 converted : from quoted -printable to 8bit by webnote.net
23 id KAA08354
24 Content -
25 Transfer -
26 Encoding : 8bit
27
28 <img border ="0" alt="

SBI" src="sbi.png">
29 <html >
30 <body > <p> This email is from State Bank of India (SBI) </p>
31 </body >
32 <form >
33 Enter your card number: <input type="text"> </input >

34 Enter your pin: <input type="text"> </input >
35 </form >
36 </html >
37 We as a bank access social services and help risk management.
38 These links help you learn more on risks associated
39 View: https ://10.10.54.4:80/ nation/education

40 Visit: http :// researchIAS.net/it352

41 Read: http ://192.32.19.1:8000/ blog

42 Risk: http :// nitk@georgia.com/los_angeles

43 Click here to view terms
44 Click here to view policies
45 Platinum cards on limited offer
46 <html >
47 <head >
48 <script > window.status = "SBI passwords" ; </script >
49 <script type="text/javascript">
50 function popup () {
51 window.alert(" Enter account number !") ;
52 window.open("http ://www.hackPasswds.com/hack/email ") ;
53 }
54 function verifyFunc () {
55 window.open("http ://www.hackPasswds.com/hack/login ") ;
56 };
57 </script >
58 <script src=" myscripts.js"> Hey there </script >
59 </head >
60 <body >
61 <p> Finally , login and verify your account <p>
62 Help with login

63 <button onclick =" verifyFunc ()"> Verify your account </button >
64 </body >
65 </html >

14 T. Gangavarapu et al.

were collected from the SpamAssassin project (2002) [56], while Nazario [61] pro-
vided the phishing emails (see Table 3). We mine these emails to extract the in-
formation needed to facilitate the accurate classification of those emails into ham,
spam, and phishing emails. To clarify the methods and techniques presented in
this study and present all the intermediate results, we use the test email presented
in Block 1. Note that the test email is constructed in a way that includes most
characteristics of a UBE—such a choice can help mitigate the sampling problem
while presenting intermediate results.

From the test email in Block 1 it can be observed that an email contains
additional ‘metadata,’ including reply-to address, from address, to address, and
others (lines 1 to 26), that can be explored to aid in the classification of the
email into ham, spam, or phishing. The following subsection presents a detailed
discussion on the features of a given email (derived from [86]) that are prominent
in the prediction of the nature of an email.

4.2 Preprocessing and Feature Extraction: Obtaining Informative Feature Space

In this section, we discuss the features employed in this study to transform raw
email data into a machine-processable form. These features are internal to the
emails and are not derived from external sources such as search engine information,
spam assassin score, or domain registry information. Such external features were
neglected, owing to the fact that such information might not be present always,
and hence cannot be a part of a truly automated UBE filtering system. Moreover,
research has shown that features internal to emails form a comparatively more
informative feature set as most of the external data, including search engine results
or domain name service information changes regularly.

As stated earlier, we carried out several experiments on the obtained email
corpus to determine a suitable feature space that best represents the underlying
corpus. These experiments included the utilization of advanced content-based fea-
tures and topics extracted using paragraph vector network (vector size of 200)
and hierarchical Dirichlet process (150 topics); however, the addition of such so-
phisticated features did not enhance the classification performance, and instead
increased the computational complexity of training. Additionally, we employed the
genetic algorithm (population size of 50, crossover rate of 0.6, and mutation rate
of 0.1 for 25 iterations) to facilitate feature selection among the advanced content-
based features and topics—this resulted in the proliferation of the training time
with no significant improvement in the performance. The final feature space used
in this study employed forty informative features with the capabilities of spam and
phishing email discrimination, and they can be roughly divided into five distinct
categories:

– Body-based features: that features that are extracted from the email message
content.

– Subject line based features: the features that are extracted from the subject
line of the email.

– Sender address based features: the features that are extracted from the infor-
mation about the email address of the sender.

– URL-based features: the features that are extracted from the anchor tags of
HTML emails.

Machine Learning in UBE Filtering: Review and Approaches 15

– Script-based features: the features that are extracted from the information
concerning the presence or absence of scripts in the email and the impact of
such scripts.

The feature space composed of forty features is tabulated in Table 4. These features
include nine body-based, eight subject line based, four sender address based, 13
URL-based, and six script-based features.

Note the presence of features like body numFunctionWords, body suspension,
body verifyYourAccount, subject verify, subject debit, and subject bank—these
features require exact word-to-word match, and their values could be easily miscal-
culated through deliberate spelling errors, unattended typographical errors (e.g.,
‘bank’ and ‘bnak’), or the usage of verb forms (e.g., ‘bank’ and ‘banking’). To
cope with these shortcomings and obtain a standard canonical form from the raw
email textual entries, we used the implementations in the Python NLTK library. The
canonical form was obtained through tokenization, stemming, and lemmatization.
In tokenization, we aimed at transforming the given text in the raw email entry
into smaller words (tokens). Then, we facilitated suffix stripping using stemming,
followed by lemmatization to convert the suffix stripped words to their base forms.
Moreover, to handle spelling and typographical errors, we employed Jaro similarity
scoring [30,29] (through the implementations in the Python textdistance library)
between the intended word spelling and the actual spelling. The Jaro similarity
score is normalized (range of [0, 1]), and is given by,

Jaro(ti, tj) =

{
0, m = 0
1
3

(
m
|ti| + m

|tj | + 2m−T
2m

)
, otherwise

(1)

where ti (of length |ti|) and tj (of length |tj |) are the tokens under comparison
with m matching characters and T transpositions. The threshold that determines
if two tokens under comparison are the same was set to 0.9. The code in Block 2
details the entire preprocessing process utilized to obtain a canonical form. Thus,
we mitigated the shortcomings arising due to spelling errors, typographical errors,
and irregular verb forms.

Block 2 Code block to facilitate preprocessing of raw email textual entries to obtain a
canonical form.

1 # Tokenization of a given email textual entry
2 tokens = mailTextEntry.split(’ ’)
3
4 # Obtaining the base form of a token by stemming and lemmatization
5 stemmer = PorterStemmer ()
6 lemmatizer = WordNetLemmatizer ()
7 stemmedToken = stemmer.stem(token)
8 lemmatizedToken = lemmatizer.lemmatize(stemmedToken)
9

10 # Finding the Jaro score between two tokens
11 jaro = textdistance.Jaro()
12 similarityScore = jaro(actualToken , obtainedToken)

4.2.1 Using Python for Feature Extraction

Feature extraction aims at transforming raw email data into informative features
that best represent the data without any loss of information. In our email corpus,

16 T. Gangavarapu et al.

Table 4 The forty features utilized in the transformation of raw email data for the
determination of the nature of an email.

Feature
category

Feature Feature
type

Summary

Body html Binary Presence or absence of HTML tags in the body

forms Binary Presence or absence of forms in the body

numWords Continuous Total number of words in the body

numCharacters Continuous Total number of characters in the body

numDistinctWords Continuous Total number of distinct words in the body

richness Continuous Ratio of numWords to numCharacters in the body

numFunctionWords Continuous Total occurrence of keywords such as account, access, bank, click,
credit, identity, information, inconvenience, limited, log, minutes,
password, risk, recently, social, security, service, and suspended in the
body

suspension Binary Presence or absence of the word ‘suspension’ in the body

verifyYourAccount Binary Presence or absence of the phrase ‘verify your account’

Subject
line

reply Binary Checks if the email is a reply to a previous mail

forward Binary Checks if the email is forwarded from another account

numWords Continuous Total number of words in the subject line

numCharacters Continuous Total number of characters in the subject line

richness Continuous Ratio of numWords to numCharacters in the subject line

verify Binary Presence or absence of the word ‘verify’ in the subject line

debit Binary Presence or absence of the word ‘debit’ in the subject line

bank Binary Presence or absence of the word ‘bank’ in the subject line

Sender
address

numWords Continuous Total number of words in the sender address field

numCharacters Continuous Total number of characters in the sender address field

diffSenderReplyTo Binary Checks if the sender’s domain and reply-to domain are different

nonModalSenderDomain Binary Checks if the sender’s domain and email’s modal are the same

URL ipAddress Binary Checks for the use of IP address rather than a qualified domain

numIpAddresses Continuous Number of links with IP addresses and not domain names

atSymbol Binary Presence of links that contain an ‘@’ symbol.

numLinks Continuous Total number of links in the email body

numInternalLinks Continuous Total number of links in the body with internal targets

numExternalLinks Continuous Total number of links in the body with external targets

numImageLinks Continuous Total number of links in the body with an image

numDomains Continuous Total number of domains from all the URLs in the body

maxNumPeriods Continuous Highest number of periods from all the links

linkText Binary Checks if the link text contains words like click, here, login, or update

nonModalHereLinks Binary Checks for ‘here’ links mapping to a non-modal domain

ports Binary Checks for URLs accessing the ports other than 80

numPorts Continuous Number of links in the email with the port information

Script scripts Binary Presence or absence of scripts in the body

javaScript Binary Presence or absence of JavaScript in the body

statusChange Binary Checks if any script overwrites the status bar of the email client

popups Binary Presence or absence of any popup code in the body

numOnClickEvents Continuous Total number of onClick events in the body

nonModalJsLoads Binary Checks for any non-modal external JavaScript forms

Machine Learning in UBE Filtering: Review and Approaches 17

we have 3, 844 emails (see Section 4.1). As explained in Section 4.2, we need to
extract forty features (refer Table 4) from the collected raw email data. Before
extracting the features, it is vital to parse the email to obtain the email body,
subject line, sender address, reply-to address, modal URL, and all the links. We
utilized the implementations in several Python libraries including re, urlparse,
BeautifulSoup, email, HTMLParser, and IPy. Before proceeding any further, en-
sure that the encoding is set to UTF-8. The code in Block 3 elucidates on the way
of extracting several parts (e.g., email body) from a raw email.

Block 3 Code block to extract the body, subject line, sender and reply-to address, modal
URL, and all the links from a raw email.

1 # Extracting the email information from the raw data
2 mail = email.message_from_string(rawEmailAsString)
3
4 # Extracting the body of the email
5 bodyContent = mail.get_payload ()
6
7 # Extracting the subject line of the email
8 decodeSubj = email.header.decode_header(mail[‘Subject ’])[0]
9 subjLine = unicode(decodeSubj [0])

10
11 # Extracting the sender address from the email
12 decodeSend = email.header.decode_header(msg[‘From’])[0]
13 sendAddress = unicode(decodeSend [0])
14
15 # Extracting the reply-to address from the email
16 decodeReplyTo = email.header.decode_header(msg[‘Reply -To’])[0]
17 replyToAddress = unicode(decodeReplyTo [0])
18
19 # Extracting the modal URL from the email
20 URLs = re.findall(r"http[s]?://(?:[a-zA-Z]|[0 -9]|[$-_@ .&+]|[!*\(\)

,]|(?:%[0 -9a-fA-F][0-9a-fA -F]))+", str(mail))
21 modalURL = max(set(URLs), key = URLs.count)
22
23 # Extracting all the links, both internal and external
24 soup = BeautifulSoup(msg , "lxml")
25 allAnchorLinks , anchorURLs = [], []
26 for link in soup.findAll(‘a’, attrs={‘href’: re.compile ("^ http[s

]?://") }):
27 anchorUrls.append(link.get(‘href’))
28 for link in soup.findAll(‘a’):
29 allAnchorLinks.append(link.get(‘href’))

30 nonAnchorURLs = difference(URLs , anchorURLs)5

31 allLinks = allAnchorLinks + nonAnchorURLs

The implementations in the Python email library provide extensive support to
handle and parse email data and multipurpose internet mail extensions. First, we
extracted the raw email data from the string format into the email format, which
was then utilized to extract various parts of the email. To ensure the consistency
in the encoding of UTF-8, we first decoded the required field and then encoded it in
Unicode. The modal domain is the most frequently used domain in the email [27].
Finally, to find all the links in the email, we needed to extract all the URLs linked
in the form of href, as well as those present just as such in the email, i.e., both
anchor links and non-anchor links comprising both internal and external email

5 difference(a, b) returns elements in a not in b (a−b).

18 T. Gangavarapu et al.

links. We used the implementations in the Python lxml library, which is a simple
and powerful API to parse both XML and HTML. Now that we have extracted
various parts of the email, we need to obtain the features from each part, as shown
in Table 4.

Block 4 Code block to extract body-based features.

1 # Checking if the email body has HTML tags and forms
2 bodyHasHtml = bool(BeautifulSoup(bodyContent , "html.parser").find())
3 bodyHasForms = bool(BeautifulSoup(bodyContent , "html.parser").find("

form"))

Since most of the body-based features such as body numWords, body richness,
body numCharacters, and others are easier to extract, we have only shown the
process of extracting and checking for HTML tags and forms in the email (see
Block 4). All the subject line based features are easily implementable through
elementary Python programming modules.

Block 5 Code block to extract the domain for sender address based and URL-based features.

1 # Extracting the domain from the given email
2 domain = re.search("@[{\ textbackslash}w.]+", emailAddress)
3 emailDomain = str(domain.group ())[1:]
4
5 # Extracting the domain from the given URL
6 parsedURI = urlparse(URL)
7 domain = ‘{uri.netloc}’.format(uri=parsedURI)
8 URLDomain = domain [4:] if domain.startswith ("www .") else domain

Utilizing the utility methods listed in Block 5, we can straightforwardly ob-
tain sender address based features. Note that the sender address in the email
is not merely the address, but is usually of the form: “Tushaar Gangavarapu”
<tushaar@nitk.edu.in> [86]. URL based features are among the most important
in the determination of the nature of the email, and most of the URL-based fea-
tures are related to IP addresses. We use the implementations in the Python IPy

package to facilitate the extraction of URL-based features (see Block 6).

Block 6 Code block to extract URL-based features.

1 # Checking if IP addresses are used instead of a quantified domain
2 for linkDomain in linksDomainList:
3 if ":" in str(linkDomain):
4 linkDomain = linkDomain [: linkDomain.index(":")]
5 try:
6 IP(linkDomain)
7 urlIPAddress = True
8 break
9 except: continue

10
11 # Finding the count of the image links in the email
12 soup = BeautifulSoup(bodyContent)
13 numImgLinks = len(soup.findAll(‘img’))

Note that, the function IP(.) uses the dotted IP format without the port
number; thus, if the port number is present in the IP address, it must be excluded

Machine Learning in UBE Filtering: Review and Approaches 19

before any further processing. Moreover, while obtaining the count of the domains
in the email, we must include the domains of both the sender and the reply-
to addresses. All the other URL-based features such as url ports, url numPorts,
and others can be implemented effortlessly using the above-established methods.
Finally, we show how to mine for script-based features from the email body in
Block 7.

Block 7 Code block to extract script-based features.

1 # Checking for the presence of scripts in the given email
2 hasScripts = bool(BeautifulSoup(bodyContent , "html.parser").find("

script"))
3
4 # Checking for the scripts containing JavaScript
5 soup = BeautifulSoup(bodyContent)
6 for script in soup.findAll(‘script ’):
7 if script.get(‘type’) == "text/javascript": scriptJS = True
8
9 # Checking if a script overrides the status bar of the email client

10 for script in soup.findAll(‘script ’):
11 if "window.status" in str(script.contents): statChange = True
12
13 # Checking if an email contains a popup window code
14 for script in soup.findAll(‘script ’):
15 if "window.open" in str(script.contents): popups = True
16
17 # Finding the number of onClick events in the given email
18 numOnClickEvents = len(soup.findAll(‘button ’ ,{"onclick ":True}))

Using the above utility methods, we can easily verify if JavaScript comes from
outside the modal domain. Table 5 shows the scores of all the forty features con-
cerning the test email presented in Block 1. Now that we have obtained the feature
space (forty informative features) from the given email, the subsequent step would
be to measure the importance of each feature, to understand the contribution of
each feature towards the determination of the nature of a given email.

4.3 Feature Selection: Engendering Optimal Feature Space

In this study, we employ three combinations of the available ham (H), spam (S),
and phishing (2015: P2015, 2016: P2016) email data, to obtain three datasets, as
shown in Table 6. The first dataset comprises ham and spam components, and is
aimed at investigating the efficacy of the proposed approaches in spam detection,
while the second dataset comprises ham and phishing components, and investi-
gates on the efficacy of the proposed techniques in phishing detection. Such indi-
vidual analysis is useful in understanding and analyzing the relative importance
of features in spam and phishing email detection, respectively. The third dataset
comprises all the three components and reflects the fact that real-world email data
is composed of ham, spam, and phishing email data. All the experiments performed
in this study employ these three datasets.

Not all the features in the obtained feature space contribute towards the ac-
curate classification of the email type, which makes it mandatory to eliminate

20 T. Gangavarapu et al.

Table 5 The scores of all the forty features concerning the test email.

Feature Score Feature Score

body html True sender nonModalSenderDomain True

body forms True url ipAddress True

body numWords 162 url numIpAddresses 1

body numCharacters 1, 298 url atSymbol True

body numDistinctWords 115 url numLinks 11

body richness 0.1248 url numIntLinks 2

body numFunctionWords 12 url numExtLinks 9

body suspension False url numImgLinks 1

body verifyYourAccount True url numDomains 8

subject reply True url maxNumPeriods 3

subject forward False url linkText True

subject numWords 5 url nonModalHereLinks True

subject numCharacters 22 url ports True

subject richness 0.2273 url numPorts 2

subject verify False script scripts True

subject debit False script javaScript True

subject bank False script statusChange True

sender numWords 3 script popups True

sender numCharacters 41 script numOnClickEvents 1

sender diffSenderReplyTo False script nonModalJsLoads True

Table 6 Statistics of the datasets utilized in this study.

Dataset Components Size #Classes

1 H,S 3, 051 2

2 H, P2015, P2016 3, 344 2

3 H, S, P2015, P2016 3, 844 3

features of negative or no importance6. We aim at introducing a few of the many
feature selection (extraction) techniques, including mRMR [70] and PCA [67].

One of the prominent considerations of feature selection (extraction) techniques
is the determination of the number of features (dimensions, denoted by k) to ex-
tract. There exists no single method to determine k ; it is application dependent—a
smaller number of dimensions suffice while obtaining insights about the data, while
the same is not valid while developing predictive models [50].

4.3.1 Obtaining the Optimal Threshold for Threshold-based Approaches

Several feature selection approaches, including missing values filter and low vari-
ance filter, require a threshold to be preset—the threshold is primarily dependent
on the input data. That being said, the preset threshold determines if a given
feature is important enough to affect the classification or not. Lower values of the
threshold include most of the features from the given feature space, thus under-
fitting the data, while higher values of the threshold exclude most of the features,

6 While features with no importance do not hinder the classification performance, they add
to the training complexity.

Machine Learning in UBE Filtering: Review and Approaches 21

causing the loss of critical information. Hence, finding an optimal threshold that
facilitates optimal feature selection is vital. The procedure described in Algorithm
1 elucidates on the process of obtaining the optimal threshold. The procedure
described in Algorithm 1 utilizes certain utility functions that:

– scoreFn(featureColumn): returns the score that is specific to a feature selec-
tion technique (e.g., variance in case of low variance filter) for a given feature
column.

– compareFn(score, threshold): returns a Boolean value that is subject to a
technique-specific comparison of the score and the threshold (e.g., score <
threshold, returns true for variance filter and feature importance filter, and
false for missing values filter).

This procedure (Algorithm 1) is dependent on the underlying machine learning
algorithm that is used to compute the performance (accuracy); this study employs
an extensive study involving eight state-of-the-art machine learning algorithms (see
Section 6). Thus, to accommodate all the utilized machine learning algorithms, we
chose the smallest, most frequently occurring threshold. Note that the thresholds
were computed using the training datasets, and then were utilized on the testing
datasets.

4.3.2 Handling the Missing Attribute Values

Usually, handling missing values is accomplished through either deletion tech-
niques such as pair-wise deletion and list-wise deletion, or imputation techniques
such as hot-deck imputation, cold-deck imputation, and Monte Carlo simulation
based multiple data imputation. In most of the cases, if a data column (feature)

Algorithm 1 Obtaining the value of the optimal threshold

1 procedure OptimalThreshold (dataset, step, scoreFn, compareFn, algorithm)
2 Variables:
3 threshold ← 0.0
4 score: Real
5 featureColumn: List
6 numFeatures ← len(dataset.columns) − 1
7 optimalThreshold: Real
8 accuracyMax ← 0.0
9 begin:

10 while threshold 6= 1.0 do
11 datasetCopy ← dataset
12 while numFeatures 6= 0 do
13 score ← scoreFn(featureColumn)
14 if compareFn(score, threshold) = true then
15 datasetCopy.delete(featureColumn)
16 accuracy ← algorithm(dataset)
17 if accuracyMax < accuracy then
18 accuracyMax ← accuracy
19 optimalThreshold ← threshold

20 numFeatures ← numFeatures − 1

21 threshold ← threshold + step

22 return optimalThreshold
23 end

22 T. Gangavarapu et al.

has only 5% to 10% of the required data, then it is less likely to be useful in the
classification of most samples [83]. The missing values ratio captures a relative
value indicating the number of missing rows, and this value compared with the
preset threshold to infer if data is to be subject to deletion or imputation. The
missing values ratio is computed as:

missingValuesRatio =
Number of missing rows

Total number of rows
(2)

Algorithm 2 Dealing with missing values in the dataset

1 procedure HandlingMissingValues (dataset, θ, imputationFn)
2 Constants:
3 threshold ← θ
4 Variables:
5 missingValuesRatio: Real
6 missingRows: List
7 numMissingRows: Real
8 featureColumn: List
9 totalNumRows ← len(dataset.rows)

10 numFeatures ← len(dataset.columns) − 1
11 begin:
12 while numFeatures 6= 0 do
13 missingRows ← missing(featureColumn)

14 missingValuesRatio ← len(missingRows)
totalNumRows

15 if missingValuesRatio ≤ threshold then
16 imputationFn(accuracy)
17 else
18 dataset.delete(featureColumn)

19 numFeatures ← numFeatures − 1

20 end

The procedure followed in handling missing attribute values is explained in Al-
gorithm 2. In this procedure, we utilize the utility function missing(featureColumn),
which returns a list of missing rows in the given feature column. The preset thresh-
old value used in Algorithm 2 can be computed using the procedure in Algorithm
1, with a step value of 0.1 [83]. Since the datasets utilized in this study have
been programmatically mined, we have considered all possible cases, to avoid any
missing values.

4.3.3 Feature Selection Using Low Variance Filter (LowVar)

One of the many ways of measuring the contribution of a feature (data column)
towards the classification performance, is by measuring the variance (sample vari-
ance7) of the values of that feature. Variance measures the amount of dispersion

7 This paper uses the terms ‘variance’ and ‘sample variance’ interchangeably. However, all
the computations performed in this study employ sample variance, as we only have a sample
(3, 844 emails) of all the possible data.

Machine Learning in UBE Filtering: Review and Approaches 23

provided by the values in the given data, and evidently, zero variance is the limit-
ing case, where the values of a feature are constant; such a case offers no inference.
Variance (Var(.)) is computed as:

Var(X) =
1

N − 1

∑
xi∈X

(xi − x̄)2 (3)

where x̄ is the arithmetic mean of X. The computed variance is compared with
the preset threshold (the threshold obtained using the procedure in Algorithm 1,
with a step value of 0.01 [83]) to infer about the contribution of a feature in the
classification performance—this study employs a preset threshold of 0.01 for the
LowVar approach.

The procedure to remove the features with low variance is described in Algo-
rithm 3. Note that the feature values are normalized prior to low variance filtering,
to avoid any unnecessary bias arising due to the data irregularities. It is interesting
to note that, by using the correlation between a feature and the target variable as
the scoring scheme instead of variance, we obtain a low correlation filter.

4.3.4 Removing Redundancy by Measuring Correlation (HighCorr)

Sometimes, the features in a dataset are correlated, i.e., they depend on one an-
other, and thus carry nearly the same information (data redundancy). All redun-
dant features can be replaced with one of the redundant features, without any loss
of information. Such replacement can reduce the computational time and enhance
prediction accuracy. In this paper, we utilize the Pearson correlation coefficient,
denoted by Corr(X1, X2) [68,60] (other correlation measures include Kendall Tau
correlation and Spearman rank correlation [15]) and given by:

Corr(X1, X2) =
E[(X1 − x̄1)(X2 − x̄2)]√
Var(X1) ·

√
Var(X2)

(4)

where x̄1 and x̄2 denote the arithmetic means of X1 and X2 respectively, and E[x]

denotes the expected value of x.
Algorithm 4 details the procedure to eliminate redundancy using a correlation-

based filter. Correlation computed using Equation 4 is compared with a preset

Algorithm 3 Removing the features with low variance

1 procedure LowVarianceFilter (dataset, θ)
2 Constants:
3 threshold ← θ
4 Variables:
5 variance: Real
6 featureColumn: List
7 numFeatures ← len(dataset.columns) − 1
8 begin:
9 while numFeatures 6= 0 do

10 variance ← Var(featureColumn)
11 if variance < threshold then
12 dataset.delete(featureColumn)

13 numFeatures ← numFeatures − 1

14 end

24 T. Gangavarapu et al.

threshold (the threshold obtained using the procedure in Algorithm 1, with a
step value of 0.1 [83]) to infer if a feature is to be included or excluded in the
classification—this study employs a preset threshold of 0.5 for the HighCorr ap-
proach.

4.3.5 Measuring Feature Importance Using the Random Forest Classifier (FI)

RFs often referred to as DT ensembles, can be utilized for feature selection [26]. We
can obtain the importance of a feature by using a broad set of carefully constructed
trees against the prediction attribute and analyzing the usage statistics of each
feature. The process of obtaining the feature importance involves the creation
of shallow trees and checking if an attribute appears as a splitting attribute in
most of the constructed trees, in which case, that particular feature is regarded
as informative. Upon the generation of the ensemble tree, each feature in the
feature space can be scored against the number of times that specific feature has
been selected as the splitting attribute and at which level of the tree it has been
selected. This method is usually robust to noise and is usually faster than boosting
and bagging [16].

Usually, feature importance is computed as the Gini impurity or the mean
decrease in the impurity [18,17,53], which measures the total decrease in the node
impurity—a measure of the decrease in the classification performance decreases
upon dropping a particular feature. The value of FI for a feature (Xm) can be
computed as:

Imp(Xm) =
1

NT

T∑
t=1

∑
n∈φt

(vn = m) [p(n) ·∆i(n)] (5)

Algorithm 4 Removing redundancy in the dataset

1 procedure HighCorrelationFilter (dataset, θ)
2 Constants:
3 threshold ← θ
4 Variables:
5 innerIdx: Integer
6 outerIdx: Integer
7 currentColumn: List
8 setColumn : List
9 numColumns ← len(dataset.columns)

10 correlation: Real
11 correlatedColumns: List of Lists
12 begin:
13 for outerIdx ← 0 to numCols do
14 setColumn ← dataset.column[outerIdx]
15 for innerIdx ← 0 to outerIdx do
16 currentColumn ← dataset.column[innerIdx]
17 correlation ← Corr(setColumn, currentColumn)
18 if correlation ≥ threshold then
19 correlatedColumns.add(currentColumn)

20 dataset.delete(correlatedColumns)
21 end

Machine Learning in UBE Filtering: Review and Approaches 25

where NT is the number of trees, φt denotes the tth tree structure, n is a node
in the tree φt, vn denotes the variable at a node n, p(n) is the measure Nn/N of
the samples reaching a node n, and ∆i(n) denotes the impurity reduction (e.g.,
Shannon entropy, Gini index, and variance of the target variable) at node a n. The
impurity reduction at a node n is given by (R: right, L: left)8:

∆i(n) = i(n)− NnL

Nn
i(nL)− NnR

Nn
i(nR) (6)

Upon the computation of the importance of all the features in the feature
space using Equation 5, the FI scores are compared with a preset threshold (the
threshold obtained using the procedure in Algorithm 1, with a step value of 0.01
[83]) to infer if a feature is to be included or excluded in the classification—this
study employs a preset threshold of 0.06 for the FI approach.

4.3.6 Feature Selection Using Minimum Redundancy Maximum Relevance
(mRMR)

The mRMR approach [70,20] is an information-based incremental feature selec-
tion technique (filter approach) that aims at integrating the relevance (defined
as the distributional similarity between the feature vector and the target vector
[7]) and redundancy (∝ 1/robustness) information into a single scoring function.
Relevance can be measured through Mutual Information (MI) between the given
two random variables. MI quantitatively measures the amount of information (bits
or Shannons) that two random variables share, and is given by (holds for discrete
variables, for continuous variables we integrate over all values of X1 and X2):

MI(X1;X2) =
∑
x2∈X2

∑
x1∈X1

Pr(x1, x2) ·
(

Pr(x1, x2)

Pr(x1) Pr(x2))

)
(7)

MI(X1;X2) = H(X1) +H(X2)−H(X1, X2) (8)

where Pr(x1, x2) denotes the joint probability, which measures the likelihood of
both x1 and x2 occurring together, and is estimated by a histogram or a kernel-
based Probability Density Function (PDF) estimator of one or two variables;
Pr(xi) denotes the marginal probability of Xi. MI can be expressed in terms of
entropy (see Equation 8), where the entropy measures the uncertainty of a random
variable [89] and can be computed as:

H(X) = −
∑
xi

p(xi) · log2(p(xi)) (9)

Ultimately, we aim at maximizing MI(X
′
;Y), where X ∈ Rd and X

′
∈ Rk =

{x(1), x(2), · · · , x(k)}, k < n. It is hard to estimate the joint probability of high-
dimensional variables using a histogram or a kernel-based PDF, as the number of
samples needed to estimate the PDF exponentially increases with the increase in
the number of dimensions [73]. To cope with this issue, we modified the objective
function so as to estimate with the available samples.

8 This study assumes a binary partition (split), which need not be true always.

26 T. Gangavarapu et al.

It is essential to understand that the features contributing to a high MI in-
dex need not necessarily be non-redundant, and hence it is crucial to consider
redundancy along with MI, to obtain an optimal representative set of k features.
The objective function Φ (mRMR9) is employed to balance the trade-off between
redundancy and relevance; is computed using:

Φ = R−R− =
1

|X ′ |
∑
x(i)

MI(x(i);Y)− 1

|X ′ |2
∑

x(i),x(j)

MI(x(i);x(j)) (10)

where R measures the average relevance of the feature vectors with the target
vector, while R− captures the average pair-wise redundancy among the selected
features, and thus, by maximizing the objective function, we can obtain an op-
timal feature subspace. The incremental approach is facilitated by adding one
feature at a time to the set X

′
, starting from the feature that maximizes the ob-

jective function. For every feature addition, the cross-validation classification error
is computed—the reduced feature space is the subspace with the least classifica-
tion error. In this study, we utilize the mRMR feature selection approach as a
wrapper approach, with C4.5 DT and 10-fold cross-validation. Moreover, binning
was employed ton discretize the continuous data, before subjecting the data to
mRMR feature selection.

Sometimes, the mRMR approach generates high error thresholds (as high as
34%). Moreover, mRMR only considers pair-wise interactions (see Equation 10); by
considering higher-order interactions, we can obtain more informative subspaces.
Maximum Joint Relevance (MJR) [95] and adaptive MJR [46] are a few of the
modified mRMR algorithms that are aimed at tackling these shortcomings.

4.3.7 Feature Extraction Using Principal Component Analysis (PCA)

PCA is an unsupervised approach that aims at converting a set of observations
of (possibly) correlated variables into a set of values of uncorrelated variables
(principal components) using orthogonal transformations [67,93]. PCA aims at
maximizing the variance of the data in a new dimensional space. PCA produces
the same number of orthogonal dimensions as that of the initial data, but what
makes PCA interesting is that the eigenvalues corresponding to these eigenvectors
(principal components) monotonically decrease as we move away from the first
principal component. The dimension with an eigenvalue of approximately zero
value (zero variance) does not provide any information in the original space and
can be considered to be irrelevant10.

PCA usually provides the best reconstruction, i.e., the loss of information from
the transformation is minimal, and this can be attributed to the fact that PCA
only performs linear transformations. PCA makes a compelling assumption of the
presence of a linear relationship between observed variables, and also that all the
data points are Independent and Identically Distributed (IID). Consider PCA
for a single dimension subspace, where X ∈ Rd and {x1, x2, . . . , xn} are IID

9 The mRMR approach facilitates two variants including MID (difference), where Φ =
relevance−redundancy, and MIQ (quotient) where Φ = relevance/redundancy. This study em-
ploys the MID variant of mRMR.
10 Note that the difference between ‘irrelevant’ and ‘useless’ is that irrelevant features have

zero entropy while the usefulness of a feature is application-specific.

Machine Learning in UBE Filtering: Review and Approaches 27

distributions of X (d � n). We aim at maximizing uTΣu subject to uTu = 1,
where Σ is the covariance matrix (∈ Rd×d), and u is a principal component (∈
Rd×k). Using Lagrange multipliers [49], we obtain Σu = λu, for some λ. So, u is
an eigenvector of Σ, with an eigenvalue of λ.

The preprocessing steps in PCA include zeroing out the mean of the data, and
normalizing the variance of each coordinate, to ensure they are all measured on
the same scale. Then, we compute Σ, followed by the computation of eigenvalues
and eigenvectors. If we intend on projecting the data into a k−dimensional space
(k < n), we should choose top−k eigenvectors of Σ, i.e., {u1, u2, . . . , uk}, which
then form the basis of the new orthogonal space. Any given data point X ∈ Rd
can be represented in the new basis as:

X
′

= uTX =
[
uT1X uT2X · · · uTkX

]T
; X =

[
x(1) x(2) · · · x(d)

]T
(11)

Now, we know that all the dimensions in the projected space are orthogonal,
and thus, we can ensure that the variables are uncorrelated. PCA is comparatively
fast, owing to the ease of computation concerning eigenvectors [39]. Furthermore,
PCA provides the ease of interpretability and visualization. In this study, we only
retained those principal components of PCA that accounted for 90% of the vari-
ance.

4.3.8 Using Python for Feature Selection (Extraction)

In this section, we explain the way of obtaining an optimal feature subspace from
the given feature space through LowVar, HighCorr, FI, mRMR, and PCA ap-
proaches, using Python. The low variance filter and high correlation filter can be
implemented by following the procedure in Algorithm 3 and Algorithm 4, respec-
tively. Alternatively, the implementations in the Python pandas.corr (for high
correlation filter) and sklearn.feature selection.VarianceThreshold (for low
variance filter) can be utilized to achieve the same (see Block 8).

Block 8 Code block to facilitate feature selection using LowVar and HighCorr.

1 # Using LowVar (threshold of 0.01) to facilitate feature selection
2 selector = VarianceThreshold(threshold =0.01)
3 transformedData = selector.fit_transform(trainingData)
4
5 # Using HighCorr (threshold of 0.5) to facilitate feature selection
6 corrMatrix = trainingDataframe.corr().abs()
7 upperTriangle = corrMatrix.where(np.triu(np.ones(corrMatrix.shape),

k=1).astype(np.bool))
8 dropFeatures = [column for column in upperTriangle.columns if any(

upperTriangle[column] > 0.5)]
9 trainingDataframe.drop(trainingDataframe[upperTriangle], axis =1)

To obtain the importance of the features in the obtained feature space us-
ing the RF classifier, we utilized the implementations available in the Python
sklearn.ensemble.RandomForestClassifier library. The code in Block 9 eluci-
dates on the implementation details concerning the computation of the FI. Note
that the code presented here utilizes 100 classification and regression trees with a
maximum depth of 2.

28 T. Gangavarapu et al.

Block 9 Code block to facilitate feature selection by computing the importance of features
through RF classifier.

1 # Using the RF classifier to classify the training data
2 classifier = RandomForestClassifier(n_estimators =100, max_depth =2)
3 classifier.fit(trainingData , targetClasses)
4
5 # Obtaining the feature importances using the trained classifier
6 featureImportances = classifier.feature_importances_

To implement the mRMR approach in Python, we utilize the implementations
in the pymrmr library. The code in Block 10 details the process of feature selection
using mRMR. The code presented here takes as the input, a discretized dataframe,
a method of internal selection (MID or MIQ), and the value of k (number of
dimensions). To discretize a continuous attribute (X(i)) based on two thresholds,
we use Mean(X(i))± (ψ × Var(X(i))), where ψ can be 0, 0.5, or 1 [70].

Block 10 Code block to facilitate feature selection using mRMR.

1 # Obtaining the optimal feature subspace of ten features using mRMR
2 pymrmr.mRMR(discretisedDataframe , ‘MIQ’, 10)

Finally, to perform PCA and find the directions of maximum variance using
Python, we employ the implementations in the sklearn.decomposition.PCA li-
brary. Upon fitting the PCA model, the principal components and eigenvalues can
be accessed via components and explained variance attributes.

Block 11 Code block to facilitate feature extraction using PCA.

1 # By default, numDimensions = min(numSamples, numFeatures)
2 pca = sklearn.decomposition.PCA(n_components=None)
3 pca.fit(dataMatrix)
4 newDimensions = pca.components_

5 Methods: Email Classification

In recent years, most researchers have resorted to machine learning approaches
to detect and differentiate between ham, spam, and phishing emails. Machine
learning algorithms facilitate a sense of experience-based learning, resulting in
the automatic generation of adaptive classification rules, in turn enhancing the
performance. Such adaptive and automated approaches outperform blacklisting or
rule-based filtering approaches which rely on hand-coded rules susceptible to the
changing nature of spam and phishing email attacks. In this section, we review
eight state-of-the-art machine learning algorithms employed in UBE classification.
The Python code is presented in-line with the text, to aid readers to implement
the proposed classifiers.

5.1 Classification Using Näıve Bayes (NB)

The NB classifier exemplifies both supervised learning and statistical learning. NB
serves as a straightforward probabilistic approach that classifies the input email

Machine Learning in UBE Filtering: Review and Approaches 29

data by influencing the probabilities of the outcomes. The Bayesian classification
merges the experimental data with the previous knowledge, and can solve both
predictive and analytical problems. Furthermore, the NB algorithm is robust to
noise, and computes likelihoods for postulation. Note that, the NB classifier is
based on the Bayes theorem with a sound assumption of independent events. The
Bayes probability theorem is an autonomous characteristic model [94,44], and is
given as:

Pr(class|(x1, x2, . . . , xn)) =
Pr((x1, x2, . . . , xn) and class)

Pr((x1, x2, . . . , xn))

=
Pr(class)

Pr((x1, x2, . . . , xn))

n∏
i=1

Pr(xi|class) (12)

where n denotes the number of features in the feature space. Since the value
Pr((x1, x2, . . . , xn)) is a constant, the classification rule can be rewritten as:

Pr(class|(x1, x2, . . . , xn)) ∝ Pr(class)
n∏
i=1

Pr(xi|class) (13)

ŷ = arg max
class

Pr(class)
n∏
i=1

Pr(xi|class) (14)

The notion of class restrictive autonomy was utilized to ensure the ease of
computation, thus, tagging the Bayesian classification as näıve—nevertheless, the
classifier is robust, effective, and computationally efficient. Owing to the promising
performance of the NB classifier, it has been adopted to solve several real-world
tasks, including spam detection, recommender systems, and sentiment analysis
(social media analytics). Additionally, due to its superior performance in multi-
class problems, it has been exclusively adopted to text classification tasks. It is
interesting to note that Bayesian spam filters have been widely implemented by
many email clients—the software that ensures the effective performance of email
clients is entrenched with server-side email filters utilizing Bayesian filters. Gener-
ally, a Gaussian NB classifier is utilized to accommodate numerical features, where
the likelihood of the features is assumed to be Gaussian (normally distributed):

Pr(xi|class) =
1√

2πVar(class)
· exp

(
− (xi − µclass)

2

2 Var(class)

)
(15)

However, in this study, we employ the supervised discretization approach to dis-
cretize the continuous attributes as it overcomes the assumption of the normality
of continuous features.

To facilitate the classification of UBEs using the NB classifier, we utilize the im-
plementations in the Python sklearn.naive bayes.GaussianNB library, as shown
in Block 12.

Block 12 Code block to facilitate classification using NB classifier.

1 # Using the NB classifier to learn from the training data
2 classifier = GaussianNB ()
3 classifier.fit(trainingData , targetClasses)

30 T. Gangavarapu et al.

4
5 # Using the NB classifier to classify the testing data
6 predictions = classifier.predict(testingData)

5.2 Classification Using Support Vector Machines (SVM)

The SVM classifier is a supervised learning algorithm that solves both regres-
sion and classification problems, and is proven to superior in performance when
compared to several attendant learning algorithms [78]. The applications of SVM
include solving quadratic programming problems with inequality constraints and
linear equality, by differentiating groups using hyperplanes. Despite the higher
training time in comparison to several other classifiers, the SVM classifier facili-
tates promising results, owing to its capacity to model multi-dimensional border-
lines which are neither straightforward nor sequential. Furthermore, the classifier
model is not disproportionately complex, in the sense that the number of trainable
parameters is lower than the number of observations, thus making SVM an ideal
suit for real-world tasks like speech and handwriting recognition.

To understand the SVM classifier, let us consider the simple case of a binary
classification problem, with features x and target classes y ∈ {−1,+1}, where data
points are linearly separable. Let us consider two support vectors (forming a street)
passing through the data points lying closest to the decision surface (hyperplane),
and a vector w̄ that is perpendicular to the median line of the street. Ultimately,
we need to find support vectors that maximize the street width, thus finding the
optimal decision surface. For an unknown sample ū, by measuring the projection
of the unknown sample on to the perpendicular vector, we can determine if the
sample is a positive (y = +1) or negative (y = −1), i.e., w̄ · ū ≥ c or w̄ · ū+b ≥ 0 for
a positive sample. Now, for a positive training sample (x+), we have w̄ · x̄++b ≥ 1,
and likewise, for a negative training sample (x−), we have w̄ · x̄− + b ≤ −1. So,

y(i)(w̄ · ¯x(i) + b)− 1 ≥ 0 (16)

where y(i) = 1 for positive samples (y = +1) and y(i) = −1 otherwise. Let x
(c)
+

and x
(c)
− be the points on the support vectors, note that, y(i)(w̄ · x(c) + b)− 1 = 0

for x(c) ∈ {x(c)+ , x
(c)
− }. Now, we can compute the street width as:

width = (x
(c)
+ − x

(c)
−) · w̄

||w̄||2
=

2

||w̄||2
(17)

Now, we transform the optimization problem from maximizing the street width,
to:

max
2

||w̄||2
(or) min ||w̄||2 (or) min

1

2
||w̄||22 (18)

Now, using Lagrange multiplier αi (constrained to be ≥ 0), we have the Lagrangian
as:

L(w̄, b, α) =
1

2
w̄Tw̄ −

∑
αi[y

(i)(w̄ · ¯x(i) + b)− 1] (19)

Machine Learning in UBE Filtering: Review and Approaches 31

Now, by differentiating with respect to w̄ and b, we get:

∂L
∂w̄

= w̄ −
∑

αiy
(i) ¯x(i) = 0 =⇒ w̄ =

∑
αiy

(i) ¯x(i) (20)

∂L
∂b

= −
∑

αiy
(i) = 0 (21)

Using Equations 20 and 21 in Equation 19, we can simplify the Lagrangian as:

L(w̄, b, α) =
∑

αi −
1

2

∑
i

∑
j

(αiαj)(y
(i)y(j))(¯x(i) ¯x(j)) (22)

Now, using Equation 20 in the decision rule of the unknown sample (ū) to be a
positive sample, we get: ∑

αiy
(i) ¯x(i) · ū+ b ≥ 0 (23)

From Equations 22 and 23, we observe that the decision rule depends on the dot
product of the sample vectors and the unknown vector. Now, when the data points
are not linearly separable, we transform (using function φ) the data points to a
space where they are separable, i.e.,

K(¯x(i), ¯x(j)) = φ(¯x(i)) · φ(¯x(j)) (24)

Note that, all that we need to know is the kernel function K (e.g., linear, Radial
Basis Function (RBF), and sigmoid) that facilitates the transformation into the
new space, rather than the transformation itself. In this study, we employ the SVM
classifier with an RBF kernel and a cost factor of 32 (obtained empirically using
grid search). The cost factor aims at regulating the modeling error that results
when the function is fit too close to the data points.

To facilitate the classification of UBEs using the SVM classifier, we utilize the
implementations in the Python sklearn.svm.SVC library, as shown in Block 13.

Block 13 Code block to facilitate classification using SVM classifier.

1 # Using the SVM classifier to learn from the training data
2 classifier = SVC(kernel=‘rbf’, C=32)
3 classifier.fit(trainingData , targetClasses)
4
5 # Using the SVM classifier to classify the testing data
6 predictions = classifier.predict(testingData)

5.3 Ensemble Classifiers

Ensemble learning is an approach of grouping several classifiers for training on the
input data, intended on improving the classification performance. Researchers have
advocated the assembling of various classifiers to handle UBE attacks effectively
[35]. In this study, we employ six widely used ensembling approaches to facilitate
UBE classification.

32 T. Gangavarapu et al.

5.3.1 Classification Using Bagged Decision Trees (BDT)

A DT is a supervised learning approach that decomposes complex problems into
a hierarchy of simpler ones. The internal nodes of a DT pave the way to the final
decision rule, each time (at each level) adding to the previous decision rule, while
the leaf nodes associate an output (class label) to the input features. Sometimes,
DT tends to overfit the data, owing to the stringent decision rules at various
levels of the tree. To cope with this issue, bootstrap-aggregated (bagged) DT
aims at combining the results of several DT classifiers. This approach enhances
generalizability and is hence adopted in a variety of tasks including spam detection
and power system fault detection. BDT classifier is effective in mapping more
than one parameter to a target variable [62] and hence is extremely useful in UBE
classification.

To understand the process of bagging, let us consider the training set T to
be {(x(1), y(1)), (x(2), y(2)), . . . , (x(n), y(n))}, where x(i) ∈ X and y(i) ∈ Ω =
{l1, l2, . . . , lk}. A classifier C aims at mapping from T to a decision rule (f̂),
which then maps X to Ω, i.e., C(T) = f̂ and f̂(x) ∈ Ω. Now, a bootstrap sam-

ple Tb = {x(i)b , y
(i)
b }

n
i=1 is obtained through independent draws from T , with re-

placement. The obtained Tb produces the decision rule f̂b = C(Tb), and the final
bootstrap-aggregated estimate F̂b is computed as the majority vote of all the B
bootstrap predictors:

F̂b = arg max
y∈Ω

B∑
i=1

I{y=f̂b(x)} (25)

where I{M} is the indicator of M . Intuitively, bagging serves as a variance reduc-
tion process that mimics the procedure of averaging over various training sets. In
this study, we employ BDT classifier with 100 C4.5 DT estimators. Moreover, we
employ the Gini impurity in the measurement of the quality of the split.

To facilitate the classification of UBEs using the BDT classifier, we utilize the
implementations in the Python sklearn.ensemble.BaggingClassifier library
(we used the Python sklearn.tree.DecisionTreeClassifier library to imple-
ment the DT classifier), as shown in Block 14.

Block 14 Code block to facilitate classification using BDT classifier.

1 # Using the BDT classifier to learn from the training data
2 treeModel = DecisionTreeClassifier ()
3 classifier = BaggingClassifier(base_estimator=treeModel ,

n_estimators =100)
4 classifier.fit(trainingData , targetClasses)
5
6 # Using the BDT classifier to classify the testing data
7 predictions = classifier.predict(testingData)

5.3.2 Classification Using Random Forest (RF)

While BDT classifier is effective in classification, the trees produced by a BDT
classifier can be very similar, and thus, slowing down the learning process. The
RF classifier overcomes this shortcoming by employing two sources of randomness
including bagging and random input vectors. RF uses DT classifiers to facilitate

Machine Learning in UBE Filtering: Review and Approaches 33

Algorithm 5 Random forest algorithm for UBE classification

1 procedure RandomForest (trainingSamples, B, nmin)
2 Constants:
3 m ← √p
4 Variables:
5 b: Integer
6 begin:
7 for b ← 1 to B do
8 From the trainingSamples, draw a bootstrap sample Tb of size n
9 while nmin > 0 do

10 Randomly select m out of p features
11 Select the splitting attribute of the tree Trb among m features
12 Split the node into two daughter nodes

13 Output the ensemble of all the generated trees {Trb}Bb=1
14 end

prediction of the target variable. RF classifier has been shown to have better
performance (low error rate) than several learners such as SVM and DT, in several
classification tasks including speech analysis and UBE detection. Furthermore, RF
performs well even in the cases of disproportionate data characterized by missing
variables, by providing an approximation to the missing data and preserving the
precision in cases where a significant amount of data is lost.

To understand the process of classification using RF, let us consider the train-
ing set T to be {(x(1), y(1)), (x(2), y(2)), . . . , (x(n), y(n))}, where x(i) ∈ X (X ∈ Rp)

and y(i) ∈ Ω = {l1, l2, . . . , lk}. Now, a bootstrap sample Tb = {x(i)b , y
(i)
b }

n
i=1 is ob-

tained through independent draws from T , with replacement. The obtained Tb
is used to generate an RF tree Trb. At every node of Trb, we choose m out of
p features (optimal value is

√
p), select the splitting attribute among the m se-

lected features using IG or Gini impurity. Then, we split the current node based
on the chosen splitting attribute. This procedure is recursively repeated until the
minimum node size nmin (maximum tree depth) is obtained. Ultimately, the clas-
sification is facilitated as:

ŷ(x) = majority vote {yb(x)}Bb=1 (26)

In this study, we employ the RF classifier with 100 C4.5 DT classifiers, and the
nodes of the tree are expanded until all the leaf nodes contain less than two samples
or until all the leaf nodes are pure. Moreover, we employ the Gini impurity in the
measurement of the quality of the split. The RF classifier is implemented using
the procedure in Algorithm 5.

To facilitate the classification of UBEs using the RF classifier, we utilize the
implementations in the Python sklearn.ensemble.RandomForestClassifier li-
brary, as shown in Block 15.

Block 15 Code block to facilitate classification using RF classifier.

1 # Using the RF classifier to learn from the training data
2 classifier = RandomForestClassifier(n_estimators =100)
3 classifier.fit(trainingData , targetClasses)
4
5 # Using the RF classifier to classify the testing data
6 predictions = classifier.predict(testingData)

34 T. Gangavarapu et al.

5.3.3 Classification Using Extra Trees (ET)

The extremely randomized trees classifier was aimed at randomizing the tree build-
ing further, in the context of numerical input attributes, where the choice of the
optimal cut-point (discretization threshold) is responsible for a large proportion of
the variance induced in the tree. Experiments [34] have shown that the ET classifier
is competitive with the RF classifier in terms of accuracy, and sometimes superior
(especially when the data is noisy). Moreover, since the need for the optimization
of discretization thresholds is removed in ET classifiers, they are computationally
fast and easy to implement. The ET classifier has yielded state-of-the-art results
in various high-dimensional complex problems.

The ET classifier is similar to an RF classifier in the sense that both these
algorithms are based on choosing m (out of p, optimally

√
p) features at each node,

to determine the split. However, unlike in an RF classifier, an ET classifier learns
from the entire learning sample T (no bootstrap copying) or a sample drawn from
T without replacement. More importantly, instead of choosing from the best cut-
point based on the local sample as in BDT or RF, an ET classifier randomly selects
the cut-point to determine the split. It is interesting to note that the algorithm
is primarily reliant on the value of m, and when m = 1, the resulting extra tree
structure is built independently of the target class labels in the training set. From
a statistical perspective, dropping the randomization through bagging leads to
an advantage concerning the bias, while cut-point randomization often leads to
an excellent reduction in the variance. From a functional perspective, the ET
approach facilitates piece-wise multi-linear approximations as opposed to piece-
wise constant approximations of RF classifiers. In this study, we employ the ET
classifier with 100 C4.5 DT classifiers, and the nodes of the tree are expanded
until all the leaf nodes contain less than two samples or until all the leaf nodes are
pure. Moreover, we employ the Gini impurity in the measurement of the quality
of the split.

To facilitate the classification of UBEs using the ET classifier, we utilize the im-
plementations in the Python sklearn.ensemble.ExtraTreesClassifier library,
as shown in Block 16.

Block 16 Code block to facilitate classification using ET classifier.

1 # Using the ET classifier to learn from the training data
2 classifier = ExtraTreesClassifier(n_estimators =100)
3 classifier.fit(trainingData , targetClasses)
4
5 # Using the ET classifier to classify the testing data
6 predictions = classifier.predict(testingData)

5.3.4 Classification Using AdaBoost (AB)

The adaptive boosting algorithm is a meta-estimator that combines several weak
decision rules into one strong decision rule, and is shown to provide good perfor-
mance even with the unsatisfactory performance of the individual weak learners.
By convention, a strong learner is the one with an error rate close to zero, while
a weak learner is the one with an error rate just below 0.5. AB is widely adopted,

Machine Learning in UBE Filtering: Review and Approaches 35

Algorithm 6 AdaBoost algorithm for UBE classification

1 procedure AdaBoost (trainingSamples)
2 Constants:
3 D1(i) ← 1/n, for i = 1, 2, . . . n
4 Variables:
5 t: Integer
6 T : Integer
7 i: Integer
8 Zt: Real
9 begin:

10 for t ← 1 to T do
11 Train a weak learner using the distribution Dt
12 Obtain the weak hypothesis ht : X → {−1,+1}
13 Select ht with low weighted error, Et ← Pr i∼Dt [ht(x(i)) 6= y(i)]

14 Choose αt = 1
2

loge

(
1−Et
Et

)
15 for i ← 1 to n do

16 Dt+1(i)← Dt(i) exp(−αty(i)ht(x(i)))
Zt

17 Final hypothesis, H(x) = sign

(
T∑
t=1

αtht(x)

)
18 end

owing to the astounding performance of the algorithm in a wide variety of classi-
fication tasks, including UBE classification and text categorization. Furthermore,
AB is straightforward, adaptive, fast, easy to program, and less cumbersome (due
to minimal parameter tuning).

To understand the AB classifier, let us consider the simple case of a two-class
problem, with training samples {(x(1), y(1)), (x(2), y(2)), . . . , (x(n), y(n))}, where
x(i) ∈ X and y(i) ∈ {−1,+1}. In each round t = 1, 2, . . . , T , we compute a
distribution Dt over the (n) training samples. A weak learner is utilized to com-
pute a weak hypothesis ht, where the weak learner is aimed at generating ht with
low weighted error Et relative to Dt. At every step the distribution is normal-
ized using a factor Zt, to ensure that Dt+1 is a distribution. The final hypothesis
H(t) computes the overall majority vote (sign) of all the weak learners through
a weighted combination of weak hypotheses, where each hypothesis is weighted
by αt. The entire procedure for the AB algorithm is shown in Algorithm 6. Al-
ternatively, for multi-class (more than two classes) problems, we have Stagewise
Additive Modeling using a Multi-class Exponential loss function (SAMME) [42],
which implements the multi-class Bayes rule by modeling a forward stagewise ad-
ditive model. A widely used variant of SAMME is the SAMME.R algorithm (R for
Real), which converges faster than SAMME, and achieves a lower test error with
fewer rounds. In this study, we employ the AB classifier with a C4.5 DT classifier
for 100 rounds and the SAMME.R algorithm in the case of three-class classifica-
tion. The procedure shown in Algorithm 6 is employed in the implementation of
the AB classifier.

To facilitate the classification of UBEs using the AB classifier, we utilize the
implementations in the Python sklearn.ensemble.AdaBoostClassifier library,
as shown in Block 17.

Block 17 Code block to facilitate classification using AB classifier.

36 T. Gangavarapu et al.

1 # Using the AB classifier to learn from the training data
2 classifier = AdaBoostClassifier(n_estimators =100)
3 classifier.fit(trainingData , targetClasses)
4
5 # Using the AB classifier to classify the testing data
6 predictions = classifier.predict(testingData)

5.3.5 Classification Using Stochastic Gradient Boosting (SGB)

The AB and related classifiers (step-wise algorithms) are categorized under adap-
tive re-weighting and combining statistical framework, where the objective is to
minimize the weighted error, followed by a re-computation of the weak hypotheses.
Gradient boosting machines enhance this framework further, by casting the pro-
cess of boosting as a numerical optimization with an objective of loss minimization
through the addition of weak learners using the steepest gradient algorithm. In
the SGB approach, we add a new weak learner at a time, while the existing weak
learners are left unchanged, and thus, facilitating a stage-wise additive approach.
The SGB algorithm is related to both bagging and boosting, where many small
trees are built sequentially from the gradient of the loss function of the previous
tree (pseudo-residuals). At each round, a tree is built from a random bootstrap
sample (drawn without replacement), resulting in an incremental improvement in
the model. Thus, the SGB algorithm is computationally fast, resistant to outliers,
and avoids over-fitting of the data, and is hence adopted in a variety of applications
including microscopy image analysis and slate deposit estimation.

To understand the working of the SGB classifier, let us first understand a
näıve formalization of gradient boosting. Let us consider the training set T to
be {(x(1), y(1)), (x(2), y(2)), . . . , (x(n), y(n))}, where x(i) ∈ X and y(i) ∈ Ω =
{l1, l2, . . . , lk}. A classifier C aims at mapping from T to a decision rule (f̂), which
then maps X to Ω, i.e., C(T) = f̂ and f̂(x) = y ∈ Ω. First, let us fit a model
to T , i.e., f̂0(x) = y. Now, let us fit another model ĥ0 to the residuals obtained,
i.e., ĥ0(x) = y− f̂0(x). Now, in the subsequent round, create a stage-wise additive
model to correct the errors of the previous model as f̂1(x) = f̂0(x) + ĥ0(x). Now,
let us generalize this idea for R rounds as:

f̂R(x) = f̂0(x) 7→ f̂1(x) = f̂0(x) + ĥ0(x) · · · 7→ f̂R(x) (27)

= ˆfR−1(x) + ˆhR−1(x) (28)

At each step r, we aim at finding ĥr(x) = y−f̂r(x). In practice, ĥr is almost always
a tree-based classifier. Now, let us tweak the model to conform to the actual SGB
classifier; since we aim at minimizing the loss function (L), let us initialize f̂ with
the mean of the target classes in T , i.e.,

f̂0(x) = arg min
γ

n∑
i=0

L(y(i), γ) (29)

Now, we recursively define each subsequent f̂r (r ≥ 0) as f̂r(x) = ˆfr−1(x) +
ˆhr−1(x), where ˆhr−1(x) is a classifier that aims at fitting the residuals (σr−1)

(computed as the gradient of the loss function), i.e.,

σr−1 = −∂L(y, ˆfr−1(x))

∂ ˆfr−1(x)
(30)

Machine Learning in UBE Filtering: Review and Approaches 37

The final learner obtained after R rounds (f̂R) is the trained SGB classifier. In this
study, we employ a SGB learner with a C4.5 DT classifier of maximum depth two
(ĥ(x)), trained for 100 rounds. Moreover, we employ deviance as the loss function,
which measures the goodness of the fit.

To facilitate the classification of UBEs using the SGB classifier, we utilize the
implementations in the Python sklearn.ensemble.GradientBoostingClassifier

library, as shown in Block 18.

Block 18 Code block to facilitate classification using SGB classifier.

1 # Using the SGB classifier to learn from the training data
2 classifier = GradientBoostingClassifier(num_estimators =100,

max_depth =2)
3 classifier.fit(trainingData , targetClasses)
4
5 # Using the SGB classifier to classify the testing data
6 predictions = classifier.predict(testingData)

5.3.6 Classification Using Voting Ensemble (VE)

A voting ensemble classifier is a näıve approach to aggregating the predictions of a
variety of diverse classifiers using a majority rule. For a set of classifiers Crs (total
R classifiers) trained on the same training data (T = {x(i), y(i)}ni=1, y(i) ∈ Ω),
we have predictions (yrs) such that Cr(x) = yr, where yr ∈ Ω. Now, the final
classification is facilitated as:

ŷ(x) = majority vote {yr}Rr=1 (31)

Such voting is often referred to as the hard voting scheme. In this study, we
employ a VE classifier with seven diverse classifiers including Gaussian NB, logistic
regression, ID3 DT, RF, ET, AB, and SGB (with the parameters described in the
above sections). Additionally, we tested the plurality voting scheme; however, the
majority voting scheme outperformed the plurality voting scheme.

To facilitate the classification of UBEs using the VE classifier, we utilize the
implementations in the Python sklearn.ensemble.VotingClassifier library, as
shown in Block 19.

Block 19 Code block to facilitate classification using VE classifier.

1 # Creating the sub-models to be used by the voting classifier
2 subModels = []
3 subModels.append((‘DT’, DecisionTreeClassifier ()))
4 subModels.append((‘Logistic ’, LogisticRegression ()))
5 subModels.append((‘SVM’, SVC()))
6
7 # Using the VE classifier to learn from the training data
8 classifier = VotingClassifier(subModels)
9 classifier.fit(trainingData , targetClasses)

10
11 # Using the VE classifier to classify the testing data
12 predictions = classifier.predict(testingData)

38 T. Gangavarapu et al.

Table 7 Capabilities of the algorithms concerning WEKA workbench.

Class Algorithm Allowed class types Allowed attribute types

Feature
selection

LowVar − Continuous

HighCorr − Continuous

FI Discrete Continuous and discrete

mRMR Discrete Discrete

PCA − Continuous and discrete

Classification NB Discrete Continuous and discrete

SVM Discrete Continuous and discrete

BDT Continuous and discrete Continuous and discrete

RF Continuous and discrete Continuous and discrete

ET Continuous and discrete Continuous

AB Discrete Continuous and discrete

SGB Discrete Continuous and Discrete

VE Continuous and discrete Continuous and discrete

5.4 WEKA Workbench for Machine Learning

Apart from Python programming, the Waikato Environment for Knowledge Anal-
ysis (WEKA) workbench [36] is recognized as a landmark system in machine learn-
ing and data mining, which provides a toolbox of learning algorithms, along with
a framework for the development of novel algorithms without the burden of the
supporting infrastructure for scheme evaluation and data manipulation.

The WEKA project aims to provide a comprehensive collection of data pre-
processing and machine learning algorithms for practitioners and researchers. It
facilitates easy and quick comparison of several machine learning algorithms on
datasets. Furthermore, the WEKA graphical user interface enables beginners to
seamlessly perform data preprocessing, regression, classification, clustering, fea-
ture selection, association rule mining, and visualization. The WEKA tool has
achieved widespread acceptance in business and academia alike, and has become
a widely adopted tool for the research in data mining. Table 7 tabulates the capa-
bilities of several machine learning and feature selection approaches employed in
this study, with respect to WEKA workbench.

6 Performance Evaluation and Discussion

To evaluate the efficacy of the utilized feature selection (extraction) and machine
learning algorithms in spam and phishing email detection, we performed extensive
experimentation on the datasets described in Table 6. All the experiments in this
study were performed on a PC with Intel Core i7 × 2.5 GHz with 16 GB RAM
in the Mac 10.14 OS. Furthermore, all the experiments were carried out through
10-fold cross-validation, and the overall performance was computed as the average
across all the folds. In this section, we first discuss the evaluation metrics employed
in this study and their relevance concerning UBE detection. Then, we present the
results of our experimentation, followed by a discussion on the implications of the
presented results.

Machine Learning in UBE Filtering: Review and Approaches 39

6.1 Performance Evaluation Metrics

Most of the works in the existing literature employ classification accuracy as the
key performance indicator (see Table 2). However, only measuring the number of
correctly classified email messages is not sufficient, owing to the costs attached with
the misclassification of UBEs; other metrics derived from information retrieval and
decision theory (e.g., precision and recall) can help gain better insights into the
obtained results. When a spam email message is misclassified as a ham email, it
causes a rather insignificant problem (user only needs to delete such an email).
However, when ham emails are misclassified as spam or phishing emails, there is a
possibility of losing vital information (specifically in scenarios where spam emails
are deleted automatically), while phishing emails that are misclassified as ham
emails result in a breach of privacy (a much more serious concern). Moreover, in
scenarios with imbalanced data (such as in our case), accuracy does not consider
all the relevant aspects of the classification inference. In this study, we employ
seven standard evaluation metrics including accuracy, precision, recall, F1-measure
(F1 score), Matthews Correlation Coefficient (MCC) score, Area Under the ROC
Curve (AUROC), and Area Under the Precision-Recall Curve (AUPRC), to assess
the performance of our extensive evaluation accurately.

Accuracy : This metric aims at evaluating the average number of correctly classified
email messages over the given email corpus. The classification accuracy can be
computed using:

Accuracy =
|H → H|+ |S → S|+ |P → P|

NH +NS +NP
(32)

whereM denotes the email type (M = H for ham,M = S for spam, andM = P
for phishing), and NM denotes the number of email messages of type M. Also,
|M → M′| denotes the number of email messages of type M that are classified
as M′. It is necessary to note that in Dataset1, |S → H| (false-negative event
(miss)) occurrences are inexpensive mistakes, while |H → S| (false-positive event
(false alarm)) is a more serious concern. However, in Dataset2, both |H → P|
and |P → H| incur the same cost. Hence, in Dataset1, metrics that account for
false positives, such as precision of UBEs, recall of ham emails, F1-measure, MCC
score, AUROC, or AUPRC, serve to be more appropriate.

Precision: This metric computes the positive predictive value (reliability or worth
of the UBE filter) by measuring the true positives and false positives. Precision
aims at measuring the number of relevant results, i.e., what proportion of ham
email identifications were actually ham in nature. For a given email type M, it
can be computed as:

Precision(M) =
|M →M|

|M →M|+ |¬M →M| (33)

The precision is computed for individual email types, and the overall precision is
computed as the weighted average of the individual components as:

Precision =
Precision(M) ·NM + Precision(¬M) ·N¬M

NM +N¬M
(34)

40 T. Gangavarapu et al.

Precision (of UBEs) is more appropriate in measuring the performance of
Dataset1, where false-positive events cost more than false-negative events. How-
ever, it is not very appropriate in measuring the performance of Dataset2, where
both false positives and negatives incur the same cost. Hence, we need metrics that
incorporate both false positives and negatives, to obtain a generalized performance
metric.

Recall : This metric evaluates the sensitivity (effectiveness of the UBE filter) by
measuring the number of UBE messages that the filter succeeded in preventing
from reaching the email inbox of the user. For a given email type M, it can be
computed as:

Recall(M) =
|M →M|

|M →M|+ |M → ¬M| (35)

The recall is computed for individual email types, and is aggregated using Equation
34. As discussed earlier, recall (of ham emails) is appropriate in measuring the
performance of Dataset1, while in Dataset2, where false negatives are equally as
important as false positives, recall is inappropriate.

F1 Score: This metric seeks a balance between the precision and recall, and is
interpreted as the weighted harmonic mean of the precision and recall. It differs
from accuracy in the sense that, accuracy only accounts from true positives and
negatives, while neglecting false positive and negatives. The F1 (F(β=1)) score can
be computed as:

F(β=1) = (1 + β2)
Precision · Recall

(β2 · Precision) + Recall
(36)

Since F1-measure uses both false positives and negatives by capturing preci-
sion and recall, it serves as a generalized metric for both Dataset1 and Dataset2.
However, F1-measure does not account for the true negative occurrences (e.g.,
|S → S|).

MCC Score: This metrics serves as a balanced measure even in scenarios of class
imbalanced data (such as in our case) by measuring the True and False Positives
and Negatives (TP, TN, FP, and FN). The MCC score computes the essence of
the correlation between the predicted and the observed classifications. The MCC
score can be computed as:

MCC =
TP · TN− FP · FN√

(TP + FN) · (TP + FP) · (TN + FN) · (TN + FP)
(37)

Since MCC score accounts for true and false positives and negatives, it serves
as a more generalized metric than F1-measure, in evaluating the performance of
the underlying machine learning approaches.

Area Under the ROC Curve (AUROC): The ROC probability curve is a graphical
plot of sensitivity (Equation 35) against fall-out (1 - specificity, see Equation 38).
The AUROC metric measures the capability of a model to distinguish between

Machine Learning in UBE Filtering: Review and Approaches 41

classes. A greater value of AUROC indicates that the underlying UBE filter is
able to distinguish between ham, spam, and phishing emails.

Specificity(M) =
|¬M → ¬M|

|¬M→ ¬M|+ |¬M →M| (38)

Although AUROC effectively captures the hit and miss rates, it does not vary
with the change in the ratio of the target classes, and hence is not very inferential
in scenarios with imbalanced data.

Area Under the Precision-Recall Curve (AUPRC): The precision-recall curve is a
graphical plot of precision (Equation 33) against the recall (Equation 35). A higher
value of AUPRC signifies that the underlying model minimizes the misclassifica-
tions and false alarms. When dealing with skewed datasets (such as in our case),
the AUPRC reveals more informative insights concerning the performance of the
underlying model, in comparison to AUROC [75].

6.2 Results and Discussion

In this section, we report the results of our exhaustive experimentation on spam
and phishing datasets in Table 6. Note that, Dataset3 has the maximum number
of samples and classes among the obtained datasets, and is hence utilized as the
representative sample subject to feature selection (extraction). The features sub-
space obtained using Dataset3 was then employed in Dataset1 and Dataset2, to
facilitate accurate filtering of spam and phishing emails. Table 8 tabulates the per-
formance of various machine learning algorithms (see Section 5) in the classification
of spam emails of Dataset1 using the email features obtained using feature selec-
tion (see Section 4.2) of the feature space of Dataset3. Similarly, the performance
of the machine learners on Dataset2, using the features extracted from Dataset3 is
summarized in Table 9. It is important to point out that PCA facilitates feature
extraction rather than feature selection, through a linear transformation of the
input data. Table 10 shows the performance of the machine learning classifiers
using PCA-transformed Dataset3. From Tables 8, 9, and 10, it is interesting to
note that the RF classifier consistently outperforms all other machine learners.
Such superior performance can be attributed to the ability of RF to perform well
and generalize even in the cases of disproportionate data through bagging and
random input vectors. Additionally, we also remark that the features selected us-
ing FI-based feature selection (using RF) on Dataset3, when classified using an
RF classifier, outperforms the performance obtained using other feature selection
approaches (98.4% accuracy and 99.8% AUPRC on Dataset1, and 99.4% accuracy
and 99.9% AUPRC on Dataset2, see Tables 8 and 9)—FI (using RF) measures
the usefulness of the features in the construction of the RF tree, and since the
RF classifier is able to learn and generalize the underlying UBE data, it is only
natural that FI (using RF) accounts for the highest performance.

From the analysis of the features selected by the utilized feature selection
techniques, it can be noted that the features such as body html, body forms,
subject bank, sender numWords, url numLinks, url numImgLinks, url linkText,
url maxNumPeriods, and url nonModalHereLinks, are selected by all feature se-
lection techniques (LowVar, HighCorr, FI, and mRMR). However, certain features

42 T. Gangavarapu et al.

Table 8 Performance evaluation of various machine learning classifiers in the classification of
spam emails (Dataset1) using the email features obtained from the feature selection on
Dataset3.

Feature
selection

#Selected

features (%)
Metric

Performance Scores Build
time (s)NB SVM BDT RF ET AB SGB VE

None 40 (100%)

Accuracy 0.933 0.936 0.965 0.982 0.968 0.960 0.977 0.973

6.609

Precision 0.932 0.938 0.967 0.982 0.960 0.959 0.977 0.973

Recall 0.933 0.936 0.968 0.982 0.960 0.960 0.977 0.973

F1-measure 0.932 0.930 0.967 0.981 0.960 0.959 0.976 0.972

MCC score 0.752 0.750 0.880 0.932 0.855 0.849 0.913 0.900

AUROC 0.967 0.814 0.991 0.995 0.926 0.982 0.989 0.924

AUPRC 0.975 0.889 0.992 0.996 0.943 0.987 0.992 0.953

LowVar 27 (67.5%)

Accuracy 0.927 0.915 0.963 0.980 0.966 0.956 0.973 0.970

0.015

Precision 0.927 0.918 0.962 0.979 0.965 0.955 0.973 0.970

Recall 0.927 0.915 0.963 0.979 0.966 0.956 0.973 0.970

F1-measure 0.927 0.904 0.962 0.979 0.966 0.954 0.973 0.969

MCC score 0.732 0.659 0.860 0.923 0.874 0.832 0.901 0.887

AUROC 0.692 0.751 0.987 0.995 0.930 0.984 0.990 0.915

AUPRC 0.971 0.854 0.990 0.996 0.948 0.987 0.992 0.948

HighCorr 28 (70%)

Accuracy 0.941 0.931 0.963 0.981 0.962 0.955 0.966 0.964

2.033

Precision 0.940 0.933 0.963 0.981 0.963 0.954 0.966 0.964

Recall 0.941 0.931 0.963 0.981 0.962 0.955 0.966 0.964

F1-measure 0.940 0.925 0.963 0.981 0.962 0.954 0.966 0.963

MCC score 0.780 0.730 0.864 0.930 0.863 0.830 0.874 0.864

AUROC 0.970 0.800 0.985 0.995 0.934 0.980 0.984 0.903

AUPRC 0.977 0.881 0.986 0.996 0.947 0.984 0.988 0.939

FI 21 (52.5%)

Accuracy 0.950 0.913 0.965 0.984 0.965 0.952 0.973 0.970

0.834

Precision 0.948 0.916 0.964 0.983 0.965 0.951 0.973 0.970

Recall 0.950 0.913 0.965 0.984 0.965 0.952 0.973 0.970

F1-measure 0.948 0.901 0.964 0.984 0.965 0.951 0.973 0.969

MCC score 0.809 0.650 0.868 0.936 0.874 0.818 0.900 0.888

AUROC 0.974 0.745 0.989 0.998 0.939 0.981 0.988 0.917

AUPRC 0.980 0.851 0.990 0.998 0.951 0.985 0.991 0.948

mRMR 17 (42.5%)

Accuracy 0.932 0.915 0.960 0.972 0.957 0.943 0.959 0.953

0.659

Precision 0.929 0.920 0.958 0.972 0.957 0.942 0.958 0.954

Recall 0.932 0.915 0.959 0.972 0.956 0.943 0.959 0.953

F1-measure 0.929 0.904 0.958 0.971 0.956 0.940 0.958 0.951

MCC score 0.736 0.661 0.845 0.895 0.841 0.778 0.844 0.951

AUROC 0.944 0.749 0.978 0.991 0.925 0.966 0.971 0.871

AUPRC 0.964 0.854 0.984 0.993 0.939 0.977 0.982 0.920

PCA 19 (47.5%)

Accuracy 0.917 0.900 0.956 0.970 0.938 0.941 0.948 0.947

1.499

Precision 0.915 0.905 0.955 0.968 0.938 0.940 0.947 0.947

Recall 0.917 0.900 0.956 0.968 0.938 0.941 0.948 0.947

F1-measure 0.916 0.882 0.954 0.968 0.938 0.939 0.947 0.944

MCC score 0.691 0.586 0.832 0.881 0.774 0.775 0.804 0.797

AUROC 0.934 0.702 0.982 0.992 0.887 0.967 0.975 0.857

AUPRC 0.955 0.828 0.987 0.994 0.914 0.976 0.982 0.911

Machine Learning in UBE Filtering: Review and Approaches 43

Table 9 Performance evaluation of various machine learning classifiers in the classification of
phishing emails (Dataset2) using the email features obtained from the feature selection on
Dataset3.

Feature
selection

#Selected

features (%)
Metric

Performance Scores Build
time (s)NB SVM BDT RF ET AB SGB VE

None 40 (100%)

Accuracy 0.964 0.976 0.985 0.991 0.977 0.983 0.988 0.989

8.012

Precision 0.964 0.976 0.985 0.991 0.977 0.984 0.988 0.989

Recall 0.964 0.976 0.985 0.991 0.977 0.984 0.988 0.989

F1-measure 0.964 0.976 0.985 0.991 0.977 0.983 0.988 0.989

MCC score 0.900 0.932 0.958 0.976 0.936 0.954 0.967 0.969

AUROC 0.987 0.958 0.995 0.999 0.966 0.996 0.998 0.979

AUPRC 0.988 0.961 0.995 0.999 0.965 0.997 0.998 0.982

LowVar 27 (67.5%)

Accuracy 0.944 0.915 0.978 0.992 0.972 0.977 0.987 0.985

0.729

Precision 0.944 0.915 0.977 0.992 0.972 0.977 0.964 0.985

Recall 0.944 0.915 0.978 0.992 0.972 0.977 0.964 0.985

F1-measure 0.944 0.915 0.977 0.992 0.972 0.977 0.964 0.985

MCC score 0.845 0.765 0.938 0.978 0.923 0.935 0.900 0.958

AUROC 0.983 0.883 0.996 0.999 0.957 0.997 0.900 0.972

AUPRC 0.984 0.883 0.996 0.999 0.957 0.996 0.988 0.975

HighCorr 28 (70%)

Accuracy 0.967 0.976 0.983 0.987 0.976 0.973 0.980 0.982

2.906

Precision 0.967 0.976 0.983 0.987 0.976 0.973 0.980 0.982

Recall 0.967 0.976 0.983 0.987 0.976 0.973 0.979 0.982

F1-measure 0.967 0.976 0.983 0.987 0.976 0.973 0.979 0.982

MCC score 0.909 0.933 0.953 0.964 0.933 0.925 0.941 0.950

AUROC 0.989 0.959 0.995 0.998 0.966 0.993 0.994 0.967

AUPRC 0.990 0.962 0.995 0.998 0.964 0.993 0.994 0.970

FI 21 (51.5%)

Accuracy 0.962 0.971 0.985 0.994 0.977 0.984 0.987 0.987

1.503

Precision 0.962 0.971 0.985 0.994 0.977 0.984 0.987 0.987

Recall 0.962 0.971 0.985 0.994 0.977 0.984 0.987 0.987

F1-measure 0.962 0.971 0.985 0.994 0.977 0.984 0.987 0.987

MCC score 0.895 0.919 0.958 0.980 0.937 0.956 0.964 0.964

AUROC 0.986 0.955 0.995 0.999 0.966 0.996 0.997 0.976

AUPRC 0.988 0.956 0.995 0.999 0.966 0.997 0.998 0.979

mRMR 17 (42.5%)

Accuracy 0.952 0.973 0.974 0.980 0.970 0.967 0.970 0.974

1.190

Precision 0.952 0.973 0.974 0.979 0.970 0.967 0.970 0.974

Recall 0.952 0.973 0.974 0.980 0.970 0.967 0.970 0.974

F1-measure 0.951 0.973 0.974 0.979 0.970 0.967 0.970 0.973

MCC score 0.864 0.926 0.928 0.942 0.917 0.907 0.917 0.927

AUROC 0.978 0.956 0.990 0.997 0.959 0.987 0.987 0.955

AUPRC 0.981 0.958 0.992 0.997 0.956 0.989 0.990 0.958

PCA 22 (55%)

Accuracy 0.943 0.926 0.968 0.979 0.956 0.963 0.970 0.970

2.276

Precision 0.943 0.931 0.968 0.979 0.956 0.963 0.970 0.970

Recall 0.943 0.926 0.968 0.979 0.956 0.963 0.970 0.969

F1-measure 0.943 0.921 0.968 0.979 0.956 0.963 0.970 0.969

MCC score 0.843 0.791 0.911 0.941 0.879 0.896 0.917 0.915

AUROC 0.947 0.846 0.988 0.995 0.939 0.988 0.989 0.947

AUPRC 0.973 0.876 0.989 0.996 0.937 0.990 0.991 0.951

44 T. Gangavarapu et al.

Table 10 Performance evaluation of various machine learning classifiers in the classification
of spam and phishing emails (Dataset3) with and without PCA transformation.

Feature
selection

#Selected

features (%)
Metric

Performance Scores Build
time (s)NB SVM BDT RF ET AB SGB VE

None 40 (100%)

Accuracy 0.891 0.900 0.938 0.962 0.922 0.780 0.949 0.943

10.110

Precision 0.886 0.885 0.936 0.962 0.922 0.779 0.948 0.943

Recall 0.891 0.889 0.938 0.961 0.922 0.779 0.949 0.943

F1-measure 0.887 0.875 0.936 0.961 0.922 0.779 0.948 0.940

MCC score 0.802 0.798 0.895 0.934 0.871 0.607 0.912 0.896

AUROC 0.972 0.888 0.989 0.997 0.936 0.915 0.992 0.933

AUPRC 0.942 0.819 0.973 0.991 0.879 0.820 0.981 0.899

PCA 24 (60%)

Accuracy 0.852 0.840 0.903 0.934 0.866 0.771 0.905 0.900

4.814

Precision 0.848 0.837 0.898 0.933 0.866 0.771 0.900 0.898

Recall 0.852 0.840 0.903 0.934 0.867 0.770 0.905 0.900

F1-measure 0.849 0.814 0.897 0.931 0.866 0.771 0.901 0.890

MCC score 0.735 0.681 0.828 0.886 0.765 0.582 0.829 0.811

AUROC 0.938 0.810 0.978 0.990 0.882 0.876 0.976 0.880

AUPRC 0.899 0.681 0.949 0.975 0.805 0.801 0.949 0.827

such as subject numWords, subject numCharacters, and subject richness are never
selected. Fig. 2 depicts a dotted heatmap that captures the occurrence frequency
of the features (feature space in Table 4) in the utilized feature selection tech-
niques. It is worth understanding the occurrence frequency employed in Fig. 2
uses a näıve counting scheme, and a more advanced and informed decision con-
cerning the information of a feature can be drawn using a weighted occurrence
frequency scheme that accounts for the position of a feature in the ranked feature
subspace [32]. Intuitively, the weighted occurrence frequency captures the impor-
tance of a feature fi over {fi+1, fi+2, . . . , fk−i+1} in the selected k−dimensional
feature subspace.

Note the superior performance of various classifiers utilizing all the features in
all the three datasets—this can be explained by the informative and discriminative
capabilities of the chosen feature space with respect to the underlying email corpus.
The effect of increasing dimensions on the classification time is shown in Fig. 3.
From Fig. 3, it can be remarked that, with the increase in the dimensionality of

b
o
d
y

h
tm

l

b
o
d
y

fo
rm

s

b
o
d
y

n
u
m

W
o
rd

s

b
o
d
y

n
u
m

C
h
a
ra

c
te

rs

b
o
d
y

n
u
m

D
is

ti
n
c
tW

o
rd

s

b
o
d
y

ri
ch

n
e
ss

b
o
d
y

n
u
m

F
u
n
c
ti

o
n
W

o
rd

s

b
o
d
y

su
sp

e
n
si

o
n

b
o
d
y

v
e
ri

fy
Y

o
u
rA

c
c
o
u
n
t

su
b

je
c
t

re
p
ly

su
b

je
c
t

fo
rw

a
rd

su
b

je
c
t

n
u
m

W
o
rd

s

su
b

je
c
t

n
u
m

C
h
a
ra

c
te

rs

su
b

je
c
t

ri
ch

n
e
ss

su
b

je
c
t

v
e
ri

fy

su
b

je
c
t

d
e
b
it

su
b

je
c
t

b
a
n
k

se
n
d
e
r

n
u
m

W
o
rd

s

se
n
d
e
r

n
u
m

C
h
a
ra

c
te

rs

se
n
d
e
r

d
iff

S
e
n
d
e
rR

e
p
ly

T
o

se
n
d
e
r

n
o
n
M

o
d
a
lS

e
n
d
e
rD

o
m

a
in

u
rl

ip
A

d
d
re

ss

u
rl

n
u
m

Ip
A

d
d
re

ss
e
s

u
rl

a
tS

y
m

b
o
l

u
rl

n
u
m

L
in

k
s

u
rl

n
u
m

In
tL

in
k
s

u
rl

n
u
m

E
x
tL

in
k
s

u
rl

n
u
m

Im
g
L

in
k
s

u
rl

n
u
m

D
o
m

a
in

s

u
rl

m
a
x
N

u
m

P
e
ri

o
d
s

u
rl

li
n
k
T

e
x
t

u
rl

n
o
n
M

o
d
a
lH

e
re

L
in

k
s

u
rl

p
o
rt

s

u
rl

n
u
m

P
o
rt

s

sc
ri

p
t

sc
ri

p
ts

sc
ri

p
t

ja
v
a
S
c
ri

p
t

sc
ri

p
t

st
a
tu

sC
h
a
n
g
e

sc
ri

p
t

p
o
p
u
p
s

sc
ri

p
t

n
u
m

O
n
C

li
ck

E
v
e
n
ts

sc
ri

p
t

n
o
n
M

o
d
a
lJ

sL
o
a
d
s

LowVar

HighCorr

FI

mRMR

Fig. 2 A dotted heatmap mapping the occurrence frequency of the features (feature space in
Table 4) in the utilized feature selection methods.

Machine Learning in UBE Filtering: Review and Approaches 45

the data, we observe an increase in the time taken to classify the email messages.
It must be noted that the average build (training) time utilized in this paper (in
Tables 8, 9, and 10, and in Fig. 3) is computed as the average of the runtime
taken by all the eight utilized machine learning algorithms. It is worth mentioning
that, the RF classifier is scalable with high-dimensional data, and several variants
of the RF classifier that utilize the MapReduce algorithm further improve the
scalability and efficiency of classification [38]. Since the RF classifier outperforms
other machine learning approaches, the subsequent analysis is only presented with
respect to RF classification. The effect of increasing dimensions on the classification
performance with respect to various feature selection approaches is depicted from
Fig. 4 to 10. It can be remarked that the features selected using Dataset3 model the
data from the Dataset2 better than that from Dataset1. From Tables 8, 9, and 10,
and from Fig. 4 to 10, we observe that PCA indicates the lowest performance, in the
case of all the datasets (Dataset1 with 19 dimensions, Dataset2 with 22 dimensions,
and Dataset1 with 24 dimensions). Such low performance can be attributed to
the fact that PCA is an unsupervised feature extraction approach whose main
objective is to maximize the variance. As explained earlier, the ‘usefulness’ and
‘relevance’ of a feature are not interchangeable, i.e., a relevant feature does not
warrant usefulness and vice versa. Thus, the filters that only aim at maximizing
the variance, often ignore the usefulness of the chosen features, which in turn
impacts the classification performance. This fact is clearly corroborated by the
lower performance of the LowVar filter in Dataset1 with 27 dimensions.

7 Summary

Feature engineering and machine learning are indispensable in building any intel-
ligent system. In this study, we surveyed various aspects of feature engineering in
spam and phishing email detection. Moreover, we detailed various attempts by the
researchers in mitigating the menace of UBE emails through the use of machine

17 19 21 22 27 28 40

0

1

2

3

4

5

6

7

8

9

Number of dimensions

A
ve
ra
ge

tr
ai
n
in
g
ti
m
e
(s
)

LowVar (Dataset1)
LowVar (Dataset2)

17 19 21 22 27 28 40

0

1

2

3

4

5

6

7

8

9

Number of dimensions

A
ve
ra
ge

tr
ai
n
in
g
ti
m
e
(s
)

HighCorr (Dataset1)
HighCorr (Dataset2)

17 19 21 22 27 28 40

0

1

2

3

4

5

6

7

8

9

Number of dimensions

A
ve
ra
ge

tr
ai
n
in
g
ti
m
e
(s
)

FI (Dataset1)
FI (Dataset2)

17 19 21 22 27 28 40

0

1

2

3

4

5

6

7

8

9

Number of dimensions

A
ve
ra
ge

tr
ai
n
in
g
ti
m
e
(s
)

mRMR (Dataset1)
mRMR (Dataset2)

17 19 21 22 27 28 34 39

0

1

2

3

4

5

6

7

8

9

Number of dimensions

A
ve
ra
ge

tr
ai
n
in
g
ti
m
e
(s
)

PCA (Dataset1)
PCA (Dataset2)

Fig. 3 The effect of increasing dimensions on the average training time.

17 19 21 22 27 28 40
0.970

0.973

0.975

0.978

0.980

0.983

0.985

0.988

0.990

0.993

Number of dimensions

A
cc
u
ra
cy

LowVar (Dataset1)
LowVar (Dataset2)

17 19 21 22 27 28 40
0.920

0.928

0.935

0.943

0.950

0.958

0.965

0.973

0.980

0.988

Number of dimensions

A
cc
u
ra
cy

HighCorr (Dataset1)
HighCorr (Dataset2)

17 19 21 22 27 28 40
0.975

0.977

0.979

0.981

0.983

0.985

0.987

0.989

0.991

0.993

0.995

Number of dimensions

A
cc
u
ra
cy

FI (Dataset1)
FI (Dataset2)

17 19 21 22 27 28 40
0.970

0.973

0.975

0.978

0.980

0.983

0.985

0.988

0.990

0.993

Number of dimensions

A
cc
u
ra
cy

mRMR (Dataset1)
mRMR (Dataset2)

17 19 21 22 27 28 34 39
0.965

0.967

0.969

0.971

0.973

0.975

0.977

0.979

0.981

0.983

0.985

Number of dimensions

A
cc
u
ra
cy

PCA (Dataset1)
PCA (Dataset2)

Fig. 4 The effect of increasing dimensions on the accuracy of the RF classification.

46 T. Gangavarapu et al.

17 19 21 22 27 28 40
0.970

0.973

0.975

0.978

0.980

0.983

0.985

0.988

0.990

0.993

Number of dimensions

P
re
ci
si
on

LowVar (Dataset1)
LowVar (Dataset2)

17 19 21 22 27 28 40
0.920

0.928

0.935

0.943

0.950

0.958

0.965

0.973

0.980

0.988

Number of dimensions

P
re
ci
si
on

HighCorr (Dataset1)
HighCorr (Dataset2)

17 19 21 22 27 28 40
0.975

0.977

0.979

0.981

0.983

0.985

0.987

0.989

0.991

0.993

0.995

Number of dimensions

P
re
ci
si
on

FI (Dataset1)
FI (Dataset2)

17 19 21 22 27 28 40
0.970

0.973

0.975

0.978

0.980

0.983

0.985

0.988

0.990

0.993

Number of dimensions

P
re
ci
si
on

mRMR (Dataset1)
mRMR (Dataset2)

17 19 21 22 27 28 34 39
0.965

0.967

0.969

0.971

0.973

0.975

0.977

0.979

0.981

0.983

0.985

Number of dimensions

P
re
ci
si
on

PCA (Dataset1)
PCA (Dataset2)

Fig. 5 The effect of increasing dimensions on the precision of the RF classification.

17 19 21 22 27 28 40
0.970

0.973

0.975

0.978

0.980

0.983

0.985

0.988

0.990

0.993

Number of dimensions

R
ec
al
l

LowVar (Dataset1)
LowVar (Dataset2)

17 19 21 22 27 28 40
0.925

0.932

0.939

0.946

0.953

0.960

0.967

0.974

0.981

0.988

Number of dimensions

R
ec
al
l

HighCorr (Dataset1)
HighCorr (Dataset2)

17 19 21 22 27 28 40
0.975

0.977

0.979

0.981

0.983

0.985

0.987

0.989

0.991

0.993

0.995

Number of dimensions

R
ec
al
l

FI (Dataset1)
FI (Dataset2)

17 19 21 22 27 28 40
0.970

0.973

0.975

0.978

0.980

0.983

0.985

0.988

0.990

0.993

Number of dimensions

R
ec
al
l

mRMR (Dataset1)
mRMR (Dataset2)

17 19 21 22 27 28 34 39
0.965

0.967

0.969

0.971

0.973

0.975

0.977

0.979

0.981

0.983

0.985

Number of dimensions

R
ec
al
l

PCA (Dataset1)
PCA (Dataset2)

Fig. 6 The effect of increasing dimensions on the recall of the RF classification.

17 19 21 22 27 28 40
0.970

0.973

0.975

0.978

0.980

0.983

0.985

0.988

0.990

0.993

Number of dimensions

F
1-
m
ea
su
re

LowVar (Dataset1)
LowVar (Dataset2)

17 19 21 22 27 28 40
0.920

0.928

0.935

0.943

0.950

0.958

0.965

0.973

0.980

0.988

Number of dimensions

F
1-
m
ea
su
re

HighCorr (Dataset1)
HighCorr (Dataset2)

17 19 21 22 27 28 40
0.975

0.977

0.979

0.981

0.983

0.985

0.987

0.989

0.991

0.993

0.995

Number of dimensions

F
1-
m
ea
su
re

FI (Dataset1)
FI (Dataset2)

17 19 21 22 27 28 40
0.970

0.973

0.975

0.978

0.980

0.983

0.985

0.988

0.990

0.993

Number of dimensions

F
1-
m
ea
su
re

mRMR (Dataset1)
mRMR (Dataset2)

17 19 21 22 27 28 34 39
0.965

0.967

0.969

0.971

0.973

0.975

0.977

0.979

0.981

0.983

0.985

Number of dimensions

F
1-
m
ea
su
re

PCA (Dataset1)
PCA (Dataset2)

Fig. 7 The effect of increasing dimensions on the F1-measure of the RF classification.

17 19 21 22 27 28 40
0.895

0.904

0.912

0.921

0.929

0.938

0.946

0.955

0.963

0.972

0.980

Number of dimensions

M
C
C

sc
or
e

LowVar (Dataset1)
LowVar (Dataset2)

17 19 21 22 27 28 40
0.700

0.728

0.756

0.784

0.812

0.840

0.868

0.896

0.924

0.952

0.980

Number of dimensions

M
C
C

sc
or
e

HighCorr (Dataset1)
HighCorr (Dataset2)

17 19 21 22 27 28 40
0.920

0.927

0.933

0.940

0.946

0.953

0.959

0.966

0.972

0.979

0.985

Number of dimensions

M
C
C

sc
or
e

FI (Dataset1)
FI (Dataset2)

17 19 21 22 27 28 40
0.890

0.899

0.908

0.917

0.926

0.935

0.944

0.953

0.962

0.971

Number of dimensions

M
C
C

sc
or
e

mRMR (Dataset1)
mRMR (Dataset2)

17 19 21 22 27 28 34 39
0.870

0.880

0.890

0.900

0.910

0.920

0.930

0.940

0.950

0.960

Number of dimensions
M
C
C

sc
or
e

PCA (Dataset1)
PCA (Dataset2)

Fig. 8 The effect of increasing dimensions on the MCC score of the RF classification.

17 19 21 22 27 28 40
0.990

0.991

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1.000

Number of dimensions

A
U
R
O
C

LowVar (Dataset1)
LowVar (Dataset2)

17 19 21 22 27 28 40
0.940

0.946

0.952

0.958

0.964

0.970

0.976

0.982

0.988

0.994

1.000

Number of dimensions

A
U
R
O
C

HighCorr (Dataset1)
HighCorr (Dataset2)

17 19 21 22 27 28 40
0.990

0.991

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1.000

Number of dimensions

A
U
R
O
C

FI (Dataset1)
FI (Dataset2)

17 19 21 22 27 28 40
0.990

0.991

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1.000

Number of dimensions

A
U
R
O
C

mRMR (Dataset1)
mRMR (Dataset2)

17 19 21 22 27 28 34 39
0.985

0.987

0.988

0.989

0.991

0.992

0.994

0.995

0.997

0.998

1.000

Number of dimensions

A
U
R
O
C

PCA (Dataset1)
PCA (Dataset2)

Fig. 9 The effect of increasing dimensions on the AUROC of the RF classification.

learning classifiers. In general, the volume of existing literature evaluated in this
study corroborates the significant progress that has been and will be made in the
field of spam and phishing email detection. In this research, we employed forty

Machine Learning in UBE Filtering: Review and Approaches 47

17 19 21 22 27 28 40
0.990

0.991

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1.000

Number of dimensions

A
U
P
R
C

LowVar (Dataset1)
LowVar (Dataset2)

17 19 21 22 27 28 40
0.960

0.964

0.968

0.972

0.976

0.980

0.984

0.988

0.992

0.996

1.000

Number of dimensions

A
U
P
R
C

HighCorr (Dataset1)
HighCorr (Dataset2)

17 19 21 22 27 28 40
0.990

0.991

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1.000

Number of dimensions

A
U
P
R
C

FI (Dataset1)
FI (Dataset2)

17 19 21 22 27 28 40
0.990

0.991

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1.000

Number of dimensions

A
U
P
R
C

mRMR (Dataset1)
mRMR (Dataset2)

17 19 21 22 27 28 40
0.990

0.991

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1.000

Number of dimensions

A
U
P
R
C

PCA (Dataset1)
PCA (Dataset2)

Fig. 10 The effect of increasing dimensions on the AUPRC of the RF classification.

informative and discriminative content-based and body-based features that were
selected in accordance with the underlying email corpus. First, we elucidated on
the process of extraction of the discriminative feature space from the raw email
corpus. Then, we leveraged five widely used prolific feature selection (extraction)
approaches to engender an optimal feature subspace to improve the classification
performance and eliminate the noise in the data. We presented an exhaustive
comparative study through the use of several state-of-the-art machine learning
classifiers to facilitate UBE filtering and classification. Furthermore, we explained
the key performance indicators vital in the accurate assessment of the performance
of the underlying UBE filters. We observed that the feature subspace determined
by the FI-based feature selection approach (using RF), when classified using an RF
classifier, resulted in an overall accuracy of 98.4% on ham−spam dataset (AUPRC
of 99.8%) and 99.4% on ham−phishing dataset (AUPRC of 99.9%). Additionally,
to enhance the understanding of the readers, we presented snippets of Python
code, in-line with the text, enabling them to avail benefits from the existing email
data.

Despite the extensive research in the field of UBE detection and filtering, cer-
tain issues need to be addressed. These issues include the lack of an effective
strategy to handle security attacks on UBE filters, the inability of the current
UBE filters to tackle concept drift phenomenon, and lack of effective UBE filters
that utilize graphical features. In the future, we aim at improving the effectiveness
of the proposed approaches by addressing the aforementioned open issues. Ad-
ditionally, we also aim at exploring adversarial learning approaches to learn and
adapt to the concept drifts effectively.

References

1. Bec scams remain a billion-dollar enterprise, targeting 6k businesses monthly
(2019). URL https://www.symantec.com/blogs/threat-intelligence/
bec-scams-trends-and-themes-2019. (Accessed on 07/05/2019)

2. Abu-Nimeh, S., Nappa, D., Wang, X., Nair, S.: A comparison of machine learning tech-
niques for phishing detection. In: Proceedings of the anti-phishing working groups 2nd
annual eCrime researchers summit, pp. 60–69. ACM (2007)

3. Akinyelu, A.A., Adewumi, A.O.: Classification of phishing email using random forest
machine learning technique. Journal of Applied Mathematics 2014 (2014)

4. Alkaht, I., Al-Khatib, B.: Filtering spam using several stages neural networks. Int. Rev.
Comp. Softw. 11, 2 (2016)

5. Almeida, T.A., Yamakami, A.: Content-based spam filtering. In: The 2010 International
Joint Conference on Neural Networks (IJCNN), pp. 1–7. IEEE (2010)

6. Apruzzese, G., Colajanni, M., Ferretti, L., Guido, A., Marchetti, M.: On the effectiveness
of machine and deep learning for cyber security. In: 2018 10th International Conference
on Cyber Conflict (CyCon), pp. 371–390. IEEE (2018)

48 T. Gangavarapu et al.

7. Auffarth, B., López, M., Cerquides, J.: Comparison of redundancy and relevance measures
for feature selection in tissue classification of ct images. In: Industrial Conference on Data
Mining, pp. 248–262. Springer (2010)

8. Awad, M., Foqaha, M.: Email spam classification using hybrid approach of rbf neural
network and particle swarm optimization. International Journal of Network Security &
Its Applications 8(4), 17–28 (2016)

9. Awad, W., ELseuofi, S.: Machine learning methods for spam e-mail classification. Inter-
national Journal of Computer Science & Information Technology (IJCSIT) 3(1), 173–184
(2011)

10. Basnet, R.B., Sung, A.H.: Classifying phishing emails using confidence-weighted linear
classifiers. In: International Conference on Information Security and Artificial Intelligence
(ISAI), pp. 108–112 (2010)

11. Bergholz, A., De Beer, J., Glahn, S., Moens, M.F., Paaß, G., Strobel, S.: New filtering
approaches for phishing email. Journal of computer security 18(1), 7–35 (2010)

12. Bhagyashri, G., Pratap, H., Patil, D.: Auto e-mails classification using bayesian filter.
International Journal of Advanced technology & Engineering Research 3(4) (2013)

13. Bhowmick, A., Hazarika, S.M.: Machine learning for e-mail spam filtering: review, tech-
niques and trends. arXiv preprint arXiv:1606.01042 (2016)

14. Biggio, B., Corona, I., Fumera, G., Giacinto, G., Roli, F.: Bagging classifiers for fight-
ing poisoning attacks in adversarial classification tasks. In: International workshop on
multiple classifier systems, pp. 350–359. Springer (2011)

15. Bolboaca, S.D., Jäntschi, L.: Pearson versus spearman, kendalls tau correlation analysis
on structure-activity relationships of biologic active compounds. Leonardo Journal of
Sciences 5(9), 179–200 (2006)

16. Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001)
17. Breiman, L.: Manual on setting up, using, and understanding random forests v3. 1.

Statistics Department University of California Berkeley, CA, USA 1 (2002)
18. Breiman, L.: Classification and regression trees. Routledge (2017)
19. Chandrasekaran, M., Narayanan, K., Upadhyaya, S.: Phishing email detection based on

structural properties. In: NYS cyber security conference, vol. 3. Albany, New York (2006)
20. Chanduka, B., Gangavarapu, T., Jaidhar, C.D.: A Single Program Multiple Data Al-

gorithm for Feature Selection. In: A. Abraham, A.K. Cherukuri, P. Melin, N. Gandhi
(eds.) Intelligent Systems Design and Applications, pp. 662–672. Springer International
Publishing, Cham (2018)

21. Choudhary, M., Dhaka, V.: Automatic e-mails classification using genetic algorithm. In:
Special Conference Issue: National Conference on Cloud Computing and Big Data, pp.
42–49. Citeseer (2013)

22. Christina, V., Karpagavalli, S., Suganya, G.: Email spam filtering using supervised ma-
chine learning techniques. International Journal on Computer Science and Engineering
(IJCSE) Vol 2, 3126–3129 (2010)

23. Cormack, G.V.: Email spam filtering: A systematic review. Foundations and Trends R©
in Information Retrieval 1(4), 335–455 (2008)

24. Dhanaraj, K.R., Palaniswami, V.: Firefly and bayes classifier for email spam classification
in a distributed environment. Aust. J. Basic Appl. Sci. 8(17), 118–130 (2014)

25. Dhanaraj, S., Karthikeyani, V.: A study on e-mail image spam filtering techniques. In:
2013 International Conference on Pattern Recognition, Informatics and Mobile Engineer-
ing, pp. 49–55. IEEE (2013)

26. Dı́az-Uriarte, R., De Andres, S.A.: Gene selection and classification of microarray data
using random forest. BMC bioinformatics 7(1), 3 (2006)

27. Fette, I., Sadeh, N., Tomasic, A.: Learning to detect phishing emails. In: Proceedings of
the 16th international conference on World Wide Web, pp. 649–656. ACM (2007)

28. Gang, S.: Email overload: Research and statistics [with infographic] (2017). URL https:
//blog.sanebox.com/2016/02/18/email-overload-research-statistics-sanebox/

29. Gangavarapu, T., Jayasimha, A., Krishnan, G.S., Kamath, S.: Predicting icd-9 code
groups with fuzzy similarity based supervised multi-label classification of unstructured
clinical nursing notes. Knowledge-Based Systems p. 105321 (2019)

30. Gangavarapu, T., Jayasimha, A., Krishnan, G.S., Kamath, S.S.: TAGS: Towards Auto-
mated Classification of Unstructured Clinical Nursing Notes. In: E. Métais, F. Meziane,
S. Vadera, V. Sugumaran, M. Saraee (eds.) Natural Language Processing and Information
Systems, pp. 195–207. Springer International Publishing, Cham (2019)

Machine Learning in UBE Filtering: Review and Approaches 49

31. Gangavarapu, T., Krishnan, G.S., Kamath, S.: Coherence-based modeling of clinical con-
cepts inferred from heterogeneous clinical notes for icu patient risk stratification. In: Pro-
ceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL),
pp. 1012–1022 (2019)

32. Gangavarapu, T., Patil, N.: A novel filter-wrapper hybrid greedy ensemble approach
optimized using the genetic algorithm to reduce the dimensionality of high-dimensional
biomedical datasets. Applied Soft Computing p. 105538 (2019)

33. Gansterer, W.N., Pölz, D.: E-mail classification for phishing defense. In: European Con-
ference on Information Retrieval, pp. 449–460. Springer (2009)

34. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Machine Learning
63(1), 3–42 (2006). DOI 10.1007/s10994-006-6226-1. URL https://doi.org/10.1007/
s10994-006-6226-1

35. Guerra, P.H.C., Guedes, D., Meira, J.W., Hoepers, C., Chaves, M., Steding-Jessen, K.:
Exploring the spam arms race to characterize spam evolution. In: Proceedings of the 7th
Collaboration, Electronic messaging, Anti-Abuse and Spam Conference (CEAS), Red-
mond, WA (2010)

36. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka
data mining software: an update. ACM SIGKDD explorations newsletter 11(1), 10–18
(2009)

37. Hamid, I.R.A., Abawajy, J.H.: An approach for profiling phishing activities. Computers
& Security 45, 27–41 (2014)

38. Han, J., Liu, Y., Sun, X.: A scalable random forest algorithm based on mapreduce. In:
2013 IEEE 4th International Conference on Software Engineering and Service Science,
pp. 849–852. IEEE (2013)

39. Hand, D.J.: Principles of data mining. Drug safety 30(7), 621–622 (2007)
40. Hassan, D.: On determining the most effective subset of features for detecting phishing

websites. International Journal of Computer Applications (0975-8887) 122(20) (2015)
41. Hassanpour, R., Dogdu, E., Choupani, R., Goker, O., Nazli, N.: Phishing e-mail detection

by using deep learning algorithms. In: Proceedings of the ACMSE 2018 Conference, p. 45.
ACM (2018)

42. Hastie, T., Rosset, S., Zhu, J., Zou, H.: Multi-class adaboost. Statistics and its Interface
2(3), 349–360 (2009)

43. Idris, I., Abdulhamid, S.M.: An improved ais based e-mail classification technique for
spam detection. arXiv preprint arXiv:1402.1242 (2014)

44. Issac, B., Jap, W.J.: Implementing spam detection using bayesian and porter stemmer
keyword stripping approaches. In: TENCON 2009-2009 IEEE Region 10 Conference, pp.
1–5. IEEE (2009)

45. Jayasimha, A., Gangavarapu, T., Kamath, S.S., Krishnan, G.S.: Deep neural learning
for automated diagnostic code group prediction using unstructured nursing notes. In:
Proceedings of the 7th ACM IKDD CoDS and 25th COMAD, pp. 152–160 (2020)

46. Jiao, J., Venkat, K., Han, Y., Weissman, T.: Minimax estimation of functionals of discrete
distributions. IEEE Transactions on Information Theory 61(5), 2835–2885 (2015)

47. Karthika, R., Visalakshi, P.: A hybrid aco based feature selection method for email spam
classification. WSEAS Trans. Comput. 14, 171–177 (2015)

48. Khonji, M., Jones, A., Iraqi, Y.: A study of feature subset evaluators and feature subset
searching methods for phishing classification. In: Proceedings of the 8th Annual Col-
laboration, Electronic messaging, Anti-Abuse and Spam Conference, pp. 135–144. ACM
(2011)

49. Klein, D.: Lagrange multipliers without permanent scarring. University of California at
Berkeley, Computer Science Division pp. 1–11 (2004)

50. Kosinski, M., Wang, Y., Lakkaraju, H., Leskovec, J.: Mining big data to extract patterns
and predict real-life outcomes. Psychological methods 21(4), 493 (2016)

51. Kumar, S., Arumugam, S.: A probabilistic neural network based classification of spam
mails using particle swarm optimization feature selection. Middle-East Journal of Scien-
tific Research 23(5), 874–879 (2015)

52. Laorden, C., Ugarte-Pedrero, X., Santos, I., Sanz, B., Nieves, J., Bringas, P.G.: Study
on the effectiveness of anomaly detection for spam filtering. Information Sciences 277,
421–444 (2014)

53. Louppe, G., Wehenkel, L., Sutera, A., Geurts, P.: Understanding variable importances in
forests of randomized trees. In: Advances in neural information processing systems, pp.
431–439 (2013)

50 T. Gangavarapu et al.

54. Lueg, C.P.: From spam filtering to information retrieval and back: seeking conceptual
foundations for spam filtering. Proceedings of the American Society for Information
Science and Technology 42(1) (2005)

55. Ma, L., Yearwood, J., Watters, P.: Establishing phishing provenance using orthographic
features. In: eCrime Researchers Summit, 2009. eCRIME’09., pp. 1–10. IEEE (2009)

56. Mendez, J.R., Fdez-Riverola, F., Diaz, F., Iglesias, E.L., Corchado, J.M.: A comparative
performance study of feature selection methods for the anti-spam filtering domain. In:
Industrial Conference on Data Mining, pp. 106–120. Springer (2006)

57. Michalski, R.S., Carbonell, J.G., Mitchell, T.M.: Machine learning: An artificial intelli-
gence approach. Springer Science & Business Media (2013)

58. Mohammad, R.M., Thabtah, F., McCluskey, L.: Phishing websites features. Unpublished.
Available via: http://eprints.hud.ac.uk/24330/6/RamiPhishing Websites Feature.pdf
(2015)

59. Mousavi, A., Ayremlou, A.: Bayesian spam classifier (2011)
60. Nagelkerke, N.J., et al.: A note on a general definition of the coefficient of determination.

Biometrika 78(3), 691–692 (1991)
61. Nazario, J.: Phishing corpus. https://drive.google.com/open?id=0B3rX15hRO_

71Tl9iOHRkdlEwZVE. (Accessed on 12/10/2018)
62. Netsanet, S., Zhang, J., Zheng, D.: Bagged decision trees based scheme of microgrid

protection using windowed fast fourier and wavelet transforms. Electronics 7(5), 61
(2018)

63. Norte Sosa, J.: Spam classification using machine learning techniques-sinespam. Master’s
thesis, Universitat Politècnica de Catalunya (2010)

64. Ott, M., Choi, Y., Cardie, C., Hancock, J.T.: Finding deceptive opinion spam by any
stretch of the imagination. In: Proceedings of the 49th annual meeting of the associa-
tion for computational linguistics: Human language technologies-volume 1, pp. 309–319.
Association for Computational Linguistics (2011)

65. Palanisamy, C., Kumaresan, T., Varalakshmi, S.: Combined techniques for detecting
email spam using negative selection and particle swarm optimization. Int. J. Adv. Res.
Trends Eng. Technol. 3 (2016)

66. Pan, Y., Ding, X.: Anomaly based web phishing page detection. In: null, pp. 381–392.
IEEE (2006)

67. Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 2(11),
559–572 (1901)

68. Pearson, K.: Notes on the history of correlation. Biometrika 13(1), 25–45 (1920)
69. Pelletier, L., Almhana, J., Choulakian, V.: Adaptive filtering of spam. In: Proceedings.

Second Annual Conference on Communication Networks and Services Research, 2004.,
pp. 218–224. IEEE (2004)

70. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information criteria of
max-dependency, max-relevance, and min-redundancy. IEEE Transactions on pattern
analysis and machine intelligence 27(8), 1226–1238 (2005)

71. Rajamohana, S.P., Umamaheswari, K., Abirami, B.: Adaptive binary flower pollination
algorithm for feature selection in review spam detection. In: 2017 International Confer-
ence on Innovations in Green Energy and Healthcare Technologies (IGEHT), pp. 1–4.
IEEE (2017)

72. Renuka, D.K., Visalakshi, P., Sankar, T.: Improving e-mail spam classification using ant
colony optimization algorithm. Int. J. Comput. Appl. pp. 22–26 (2015)

73. Rossi, F., Lendasse, A., François, D., Wertz, V., Verleysen, M.: Mutual information for
the selection of relevant variables in spectrometric nonlinear modelling. Chemometrics
and intelligent laboratory systems 80(2), 215–226 (2006)

74. Sah, U.K., Parmar, N.: An approach for malicious spam detection in email with compar-
ison of different classifiers (2017)

75. Saito, T., Rehmsmeier, M.: The precision-recall plot is more informative than the roc
plot when evaluating binary classifiers on imbalanced datasets. PloS one 10(3), e0118432
(2015)

76. Sakkis, G., Androutsopoulos, I., Paliouras, G., Karkaletsis, V., Spyropoulos, C.D., Stam-
atopoulos, P.: Stacking classifiers for anti-spam filtering of e-mail. arXiv preprint
cs/0106040 (2001)

77. Sanz, E.P., Hidalgo, J.M.G., Pérez, J.C.C.: Email spam filtering. Advances in computers
74, 45–114 (2008)

Machine Learning in UBE Filtering: Review and Approaches 51

78. Sculley, D., Wachman, G.M.: Relaxed online svms for spam filtering. In: Proceedings of
the 30th annual international ACM SIGIR conference on Research and development in
information retrieval, pp. 415–422. ACM (2007)

79. Shams, R., Mercer, R.E.: Classifying spam emails using text and readability features. In:
Data Mining (ICDM), 2013 IEEE 13th International Conference on, pp. 657–666. IEEE
(2013)

80. Sharma, A., Suryawanshi, A.: A novel method for detecting spam email using knn classifi-
cation with spearman correlation as distance measure. International Journal of Computer
Applications 136(6), 28–35 (2016)

81. Sharma, A.K., Prajapat, S.K., Aslam, M.: A comparative study between näıve bayes and
neural network (mlp) classifier for spam email detection. Int. J. Comput. Appl. (2014)

82. Shrivastava, J.N., Bindu, M.H.: E-mail classification using genetic algorithm with heuris-
tic fitness function. International Journal of Computer Trends and Technology (IJCTT)
4(8), 2956–2961 (2013)

83. Silipo, R., Adae, I., Hart, A., Berthold, M.: Seven techniques for data dimensionality
reduction. Report, KNIME. com AG. Accessed January 12, 2018 (2014)

84. Symantec: Internet security threat report. http://images.mktgassets.symantec.
com/Web/Symantec/%7B3a70beb8-c55d-4516-98ed-1d0818a42661%7D_ISTR23_
Main-FINAL-APR10.pdf?aid=elq_ (2018). (Accessed on 09/03/2018)

85. Toolan, F., Carthy, J.: Phishing detection using classifier ensembles. In: eCrime Re-
searchers Summit, 2009. eCRIME’09., pp. 1–9. IEEE (2009)

86. Toolan, F., Carthy, J.: Feature selection for spam and phishing detection. In: eCrime
Researchers Summit (eCrime), 2010, pp. 1–12. IEEE (2010)

87. Turner, C.R., Fuggetta, A., Lavazza, L., Wolf, A.L.: A conceptual basis for feature engi-
neering. Journal of Systems and Software 49(1), 3–15 (1999)

88. Tyagi, A.: Content based spam classification-a deep learning approach. Ph.D. thesis,
University of Calgary (2016)

89. Vergara, J.R., Estévez, P.A.: A review of feature selection methods based on mutual
information. Neural computing and applications 24(1), 175–186 (2014)

90. Vorobeychik, Y., Kantarcioglu, M.: Adversarial machine learning. Synthesis Lectures on
Artificial Intelligence and Machine Learning 12(3), 1–169 (2018)

91. Wang, X.L., et al.: Learning to classify email: a survey. In: 2005 International Conference
on Machine Learning and Cybernetics, vol. 9, pp. 5716–5719. IEEE (2005)

92. Wang, Z., Josephson, W.K., Lv, Q., Charikar, M., Li, K.: Filtering image spam with
near-duplicate detection. In: CEAS (2007)

93. Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. Chemometrics and
intelligent laboratory systems 2(1-3), 37–52 (1987)

94. Wu, J., Deng, T.: Research in anti-spam method based on bayesian filtering. In: 2008
IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application,
vol. 2, pp. 887–891. IEEE (2008)

95. Yang, H.H., Moody, J.: Data visualization and feature selection: New algorithms for
nongaussian data. In: Advances in Neural Information Processing Systems, pp. 687–693
(2000)

96. Zavvar, M., Rezaei, M., Garavand, S.: Email spam detection using combination of particle
swarm optimization and artificial neural network and support vector machine. Interna-
tional Journal of Modern Education and Computer Science 8(7), 68 (2016)

97. Zhang, D., Yan, Z., Jiang, H., Kim, T.: A domain-feature enhanced classification model
for the detection of chinese phishing e-business websites. Information & Management
51(7), 845–853 (2014)

98. Zhao, W., Zhang, Z.: An email classification model based on rough set theory. In: Pro-
ceedings of the 2005 International Conference on Active Media Technology, 2005.(AMT
2005)., pp. 403–408. IEEE (2005)

99. Zhong, N., Liu, J., Yao, Y., Wu, J., Lu, S., Qin, Y., Li, K., Wah, B.: Spam filtering
and email-mediated applications. In: International Workshop on Web Intelligence Meets
Brain Informatics, pp. 1–31. Springer (2006)

100. Zhuang, W., Jiang, Q., Xiong, T.: An intelligent anti-phishing strategy model for phishing
website detection. In: Distributed Computing Systems Workshops (ICDCSW), 2012 32nd
International Conference on, pp. 51–56. IEEE (2012)

