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Can this carefully judged insight ever replace the traditional polling?
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General elections for S states — Telangana, Chhattisgarh, Rajasthan, Madhya
Pradesh, and Mizoram

BJP vs. Congress at the “national level” with various alliances at the “state level”
Legacy data on previously formed alliances can help simulate post-election
possible alliances (monte-carlo simulations)

Indian elections in comparison with U.S. elections have many unmodelable
“influential parameters” (e.g., money, liquor, gifts, schemes, etc.)

Indian election prediction involves mining the opinions of people as well as
collection of data from the official handles

Various polling strategies (e.g., open debates, allegations) must also be analyzed
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Sampling bias problem — not all people registered to vote express self-opinions on
social media; geo-tagging can mitigate, not eradicate!

Diversity among modeling — which of the existing state-of-the-art can best model
social media data?

Temporal nature of the social media — sustaining preference for a political party
over a long period of time vs. the rising popularity of an event?

Affective outcomes of party choices — influence of the events caused by an
electoral candidate or a political party

Gender-based analytics — if social media mimics the real-world scenario, then

should gender-based analytics be incorporated into the prediction model?
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Problem Statement and Research Objectives

Mining and modeling users’ digital footprints on social media (Twitter) to accurately

predict the outcomes of the general elections in a nation (India)

Research Objectives:
Design of an effective modeling framework that unifies various theories of social media
modeling including volumetric, sentiment, network, and gender analyses to gauge at
voters’ behavioral patterns
Incorporating the temporal nature of social media footprints to assess the sustainability
and popularity of a political party concerning day-to-day political changes over a long

period

Mining the affective outcomes of the voters as the digital footprints of the events caused by

an electoral candidate or political party




Twitter Mining: "arameters

7/
0‘0

7/
0’0
7/
1 X4
/7
0‘0

/
X4

Followers count
Friends count

Listed count

Retweet, Quote count

Reply, Favorite count

— reachability

d =3

The author's
user ID.

The author of the tweet. This.
embedded object can get out of sync.

Whether this user has geo Number of tweets
this user has.

The geo tag on this tweet in

'G'NSONM#MWJW). lmmvm ‘

“name”>"Twitter AFIT,
- T

description

"The Real Twitter API. I tweet about API and

happily answer questions about Twitter and our AFI. Don't get an It's on sy web
SUEL* s> heepi/ Zeplwiki. tvittar . con®

The author's “location”. This is a free-form text fleld, and
there are no guarantees on whether it can be geocoded.

“geo_anablod” =>true,

"notifications =>talse,

"following =>true,
veritied true

" -, ol
i Y
place”=> The ]
(_ﬁ’—’——;w
"url s> "hitpr//api.tvitter.oom/ 1 /geo/ id/ L 8e: ~




IDs are roughly sorted & Consecutive duplicate tweets
developers should treat them are rejected. 140 character
nwmmwum max (hitp /it ly/4ud3he).

J The tweet's unique ID. These Text of the tweet.
{"id"=>12296272736;

“text"=>
nmxymnmma

Twitter Mining: "arameters

http:/ i /1 65453%, | Tweet's
"ereated_at"=>"Fri Apr 16 l'l‘!!“ moo 2010" 4 creation
The ID of an existing tweet that date.
reply_to_screen_name"=>nil, this tweet is in reply to. Wont

/7

ki w\l S || SR
“»  Followers count S w -
. . 75?:’-‘:?1:3%-,.—% : ! ]
<  Friends count R L T —_—

< Listed count — reachability

'u‘r»'nmmuum m ~ »
Retweet, Quote count

J
‘ The author's DEPRECATED
user ID.

The author's “location”. This is a free-form text field, and
there are no guarantees on whether it can be geocoded.

The author of the tweet. This
embedded object can get out of sync.

DI IR IR <
1":.*_::"
Ee
g
7i
it é
E
. g:
7 of |
gi ;
3¢ ¥
L B

Reply, Favorite count

L~ “utatuses_count =>1620,
lrlundl cmc -»Il.-

Location — geo-tagging ;,‘*:,-:;;::;...; '

true, Whether this user is
" no nu ations"«>2al DEPRECATED o not. nuumumm
"tollowing"=>true in this context Number of then this tweet is not visible
Whether this user """""’ except 1o "friends”.
conutbutorl nuun) has a verified badge. I
n

Time of creation — temporal ranking

this user has geo
(hitp-iibit ly/4pFY 7).

X8 Hashtags, User mentions— network ot "\'\{ T
% Language, Tweet text— sentiment I e e | |

“country_code”=>"Us", The type of this

"country”=>"The United States of Assrica’ D'-a can be a The place associated with this
, - l Tweet (http/bit. ly/b8L1Cp). |
{"coordinates”=

1-122.42204084, 37.76093497],
[-122.3964, 37.76893497),

[=122.3984, 3774782097, w

[=122. 42204004, 17.787528971)),
“type”=>"Polygon”}}.
"source”=> ub 7

The bounding
MMN box for this
 E—

‘ The geo tag on this tweet in L
GeaJSON (http/bit ly/o8L1 Cp).
H




Twitter Mining: "arameters

“»  Followers count

“»  Friends count

7

< Listed count — reachability

% Retweet, Quote count

% Reply, Favorite count

% Location — geo-tagging

< Time of creation — temporal ranking
< Hashtags, User mentions— network
< Language, Tweet text— sentiment

% Gender* — analysis

* . . . .
Gender is not a Twitter parameter, it has to estimated separately

The author of the tweet. This
embedded object can get out of sync.

Number of tweets
this user has.

The geo tag on this tweet in
GeoJSON (http /it ly/b8L1Cp).

® numd- mn - u..

\xn ationy”«>tal DEPRECATED
fono-u q >Lrue in this context
Whether this user
“eon Lubuton UHUII) has a verified badge. I
21 >
i n

- 13
*1d"=s" 204 c0cT20088376" Ihe sheoe 0
url*s>"heepar//api.ewitter.com/ 1 /geo/id/ 061182 *

The tweet's unique ID. These Text of the tweet.

IDs are roughly sorted & Consecutive duplicate tweets
developers should treat them are rejected. 140 character
as opaque (hitp /bt ly/dCkppc). max (hitp /it ly/4ud3he).
E {4d"=>12296272736 /
“text"=>
8| 'An early look at Annotations:
§ http:/ Tvndrs
“ereated_at"=>"Fri Apr 16 l'hSSI“ mn 2010"
The ID of an existing tweet that m
reply_to_screen_name =>nil, this twoot is in reply 10. Won't
g reply to_status_id"=>nil The screen name & be set unless the author of the
) “""‘"“‘ =>false, rephed referenced tweet is mentioned.
iQ truncnnd >false, Truncated to 140 u"::m "
2 L NS povste o SM4S . The author's
il "1d" -ansun user Name. mw‘

léuc-_,u-n‘-oﬂ i

"name®=>"Twitter AFI” The author's
“dosc rlpuon screen name.
"The Real huu-r API. I tweet about API chan aues and

happlly answer questions about Twitter and our AFI. Don't get an answer? It's on sy website.
*url*s> hetpi//eplviki. tvittar.con’ o
"location"=>"San Francisco, CA®

The author's “location”. This is a free-form text field, and
there are no guarantees on whether it can be geocoded.

THtatuses_count®=>1620,

PR
"protected =>falas

Whaother this user is protected
o not. If the user is protected,
then this tweet is not visible
except to "friends”.

this user.
11
a Mm
—

“eountry_coda”=>"Us",

"eountry®«>"The United States of Assrica”

“bounding_boxTs>

{"coordinates” - )

LI-122.82206004, 3776093497,

[-122.3968, 27.768934%7),
[=122.3964, 37.787528%7),
[=122.42204004, 17.70752897))),

' The country this place is in '

“type”=>"Polygon”}}.
"source”=>"web”
that sent this. box for this



Challenges in

[ocation — number of
people posting their
opinions vs. number of

those people voting!

Modeling

user_screen_name user_gender

user_followers_count user_friends _count user _listed _count user_location tweet created at

urskumar9 female

saiverameshwar

tiny_jerk

Fri Nov 09
1012 233 3 None 04:26:11 +0000
2018

Fri Nov 09
4 26 0 None 04:26:30 +0000
2018

Fri Nov 09
3 155 0 @ 04:26:48 +0000

65.07% tweets — unrelated geo-tags




Challenges in

Chhattisgarh/Congress+ Tweets/Day

800

600

400

200

0

[ocation — number of
people posting their
opinions vs. number of

those people voting!

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Day (Start: 11-23-2018)

Modeling

user_screen_name user_gender user_followers _count user_friends_count user_listed_count user_location tweet_created_at

Fri Nov 09

urskumar9 female 1012 233 3 None 04:26:11 +0000
2018

Fri Nov 09
saiverameshwar 4 26 0 None 04:26:30 +0000
2018

Fri Nov 09
tiny_jerk 3 155 0 @ 04:26:48 +0000
2018

_—

= 65.07% tweets — unrelated geo-tags

Volume - not many handles and the number of

posts per handle is as low as 3 tweets/day!



Challenges in

Chbhattisgarh/Congress+ Tweets/Day

800

600

400

200

[ocation — number of
people posting their
opinions vs. number of

those people voting!

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Day (Start: 11-23-2018)

Modeling

user_screen_name user_gender user_followers _count user_friends_count user_listed_count user_location tweet_created_at

Fri Nov 09

urskumar9 female 1012 233 3 None 04:26:11 +0000

2018

Fri Nov 09

saiverameshwar 4 26 0 None 04:26:30 +0000

2018

Fri Nov 09
tiny_jerk 3 155 0 @ 04:26:48 +0000

= 65.07% tweets — unrelated geo-tags

Volume — not many handles and the number of
posts per handle is as low as 3 tweets/day!
Language — discarding non-english tweets removes
“48.2%” of the tweets (Hindi or Telugu)!
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of mentions online (e.g., retweets, supporters, likes, etc.)

{relevant social media mentions}

Vol = B (%)

Pt X {relevant social media mentions}
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Digital footprints are preprocessed to ensure that the retained footprints

speciﬁcally mention a single party or its most prominent candidate

k
e t-t
(S

Volumetric score is temporally weighted to assess the sustainability and popularity
Wlth time s Tem =
t,

X {relevant social media mentions} - Tem
(t) t P;t tat € (y
Vol .. = : : : (%)
PhEe X X {relevant social media mentions}
t 1 )




Theories of Social Media Modeling:

Measures the positive, negative, and net sentiment impressions of each party on
social media, based on simple counts of the number of tweets with the positive

and negative sentiment

10



Theories of Social Media Modeling:

Measures the positive, negative, and net sentiment impressions of each party on

social media, based on simple counts of the number of tweets with the positive
and negative sentiment

Sentiment score (Sen"™") is weighted temporally and by the reachability of the
plite
footprint to assess the sustainability and popularity with time

O/
X4

7/
X4

10



Theories of Social Media Modeling:

Measures the positive, negative, and net sentiment impressions of each party on

social media, based on simple counts of the number of tweets with the positive

and negative sentiment

Sentiment score (Sen ;") is weighted temporally and by the reachability of the

footprint to assess the sustainability and popularity with time

O/
X4

7/
X4

We employ a hybrid of supervised and unsupervised approaches to effectively
estimate the sentiment of the collected footprints

/7 X/
%> %0
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Complex linguistic structure

X B30 or P2 responsibility is not visible
X B30 S PRODVY T2 PGS SIS
o

Corpus for sentiment classification

% [1] (2] *
Telugu Hindi
Positive Negative Neutral Positive  Negative
Hand-annotated 250 250 250 250 250
Pure language 1,491 1,441 2,478 2,290 712
English code-mixed 1,491 1,441 2,478 1,352 570
Total 3,232 3,132 5,206 3,892 1,532

* & - . . . . .
Sata-Anuvadak partial translation of the obtained Telugu corpus was performed to achieve the Te-En code-mix corpus

desham patla kani prajala patla kani badhyata kanipinchadu
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your part-time job as PM. That's a wrap from the 4th edition of @ Twitterindia & YKA's

#DemocracyAdda. Thank you for being such a lively audience,
Btw its been 1,654 days sing  #Raipur. Let's not leave these discussions here - it's now time to
learn more about critical issues, governance, and policies, and go
out to vote responsibly.
Some pics from our Hyderab 09 5:43 PM - Oct 24, 2018
having questions thrown at your
O388.1K 10:17 PM - Dec 5, 2018
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Unemployment and
Religion, caste, Corruption

%/JJ
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#DemocracyAdda. Thank you for being such a lively audience,
#Raipur. Let's not leave these discussions here - it's now time to
learn more about critical issues, governance, and policies, and go
out to vote responsibly.

Btw its been 1,654 days sinc/
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Some pics from our Hyderab 9 5:43 PM - Oct 24, 2018
having questions thrown at your
O388.1K 10:17 PM - Dec 5, 2018
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Top mentioned leaders:

X/

o
XS
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tate Party Collected Handles* Time (days) o
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Telangana Congress+ 55,751 241,489 7 —19 ~35 .
TRS 162,096 8 -85 *
BJP 4,317 16 ~25 1 .
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UToSMoV:

Repeated words (> 4)
Punctuations (>5)
Retweets
~Wordsmoothing—

Internet slang*

4 User User User User qser User User-
. Screen Follow. Friends Listed Locatio
Twitter ID N Gender
ame Count Count Count n
4 1052824183 Vinay male 79 2 Andhra
866982400 Bhaskar Pradesh
India
Tweet Tweet Tweet Tweet Tweet Tweet
Hashtags User Retweet Favorite Quote Reply  Tweet Text
Mentions Count Count Count Count
20 200 S 20 RT
@PTelangana @PTelangana:
#SaveTelangana ~ @KTRTRS KCR 5"9
#SaveDemocrac  @RaoKavitha ITPITON...@
y @trsharish KTRTRS
@sushilr TOI @RaoKavitha
@trshar...

* .. . .
Abbreviation library can be found at: https://www.netlingo.com/acronyms.php

Tweet
Tweet
Created Lan
At &
Fri Nov 09 te
04:27:26
+0000 2018
Tweet Tweet
Senti. Alliance
negative TRS
20
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[ Un-identified [l Female [l Male
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S Il S
g 75
g 75%
2 :
"a 50 E
% go 50%
25 g
4 S 25%
&
0
BJP . 0%
Network Analysisg RS Congress+ BJP
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UToSMoV on Chhattisgarh: Results and Analysis
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UToSMoV on Fajasthan: Results and Analysis
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UToSMoV on Madhvya Pradesh: Results and Analysis
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Unification of Various Theories:
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Conclusions and Future Work

Unified framework that models volumetric, sentiment, social network, gender,
and influence outperforms the baseline predictions

Temporal backtracking guided by influence accounts for a change in the user’s
opinion due to the political party’s influence

Fact checking and fake-news detection modules are to be incorporated to enable
more accurate predictions

An effective strategy for bot and sockpuppet identification must be developed
Develop a parameter self-adaptive model to learn the unification parameters
Post-election alliances to be found using legacy data via monte-carlo simulations

Polling strategies such as opposition speeches are to be analyzed
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