Gauging the Behavioral Patterns of Voters Using a Unified Theory of Social Media Modeling

Tushaar Gangavarapu (BTech) Prof. Dr. Ram Mohana Reddy Guddeti (PhD)

Introduction

- Elections provide important opportunity to advance democratization!
- Now-a-days social media stands as an effective platform of self-expression, communication, and participation
 - Pitfalls of social media data*
 - Bots and sockpuppets?
 - Escaping filter bubbles?
 - Linguistic and temporal structure

* Kosinski, M., et al. "Facebook as a Research Tool for the Social Sciences." American Psychologist (2015): 543-556.

Introduction

- Elections provide important opportunity to advance democratization!
- Now-a-days social media stands as an effective platform of self-expression, communication, and participation
- India: 2013-14 was the first exposure of social media for electoral campaigning
- Time and cost effectiveness of using social media to gauge public opinion

Introduction

- Elections provide important opportunity to advance democratization!
- Now-a-days social media stands as an effective platform of self-expression, communication, and participation
- India: 2013-14 was the first exposure of social media for electoral campaigning
- Time and cost effectiveness of using social media to gauge public opinion

Can this carefully judged insight ever replace the traditional polling?

Social Media: Open Source to Privacy?

Finding patterns and trends with time

- Sources
- Sentiments
- Hashtags
- Alliances

Social Media: Open Source to Privacy?

- Finding patterns and trends with time
 - Sources
 - Sentiments
 - ✤ Hashtags
 - Alliances
- Sustainability and popularity on the social network
 - Temporal nature
 - User mentions

Social Media: Open Source to Privacy?

		State	Political Party	Results
स्टब्स् कार्य की प्रान भारत			BJP	1/119
का संकल्प SACH BI	IARAT	Telangana	Congress+	21/119
	STREET STREET	Telaligalia	TRS	88/119
Follow			Others	9/119
BJP 💿	Following	Chhattisgarh	BJP	22/90
@BJP4India Congress		Cimattisgarii	Congress+	68/90
Official Twitter account of the Bharatiya Janata Party @INCIndia	5 40 55 MAG 105 MARKED 55		ВЈР	79/199
(BJP), world's largest political party. भारताय जनता पाटा The Official Twit (भाजपा) instagram.com/bjp4india Political Movem	er Account of India's Most Vibrant ent - The Indian National Congress	Rajasthan	Congress+	100/199
© 6-A, Deen Dayal Upadhyay Marg, Delhi 110002 © New Delhi, In	dia 🖉 inc.in		Others	20/199
S bjp.org 🗊 Joined October 2010	iry 2013		BJP	111/230
2 Following 10.6M Followers 2,493 Following	4.9M Followers	Madhya Pradesh	Congress+	114/230
Tweets Tweets & replies Media Likes Tweets Tw	eets & replies Media Likes	Trucesii	Others	5/230
		Mizoram	MLF	26/40
♀ 26 1, 363 ♥ 1.8K	P		Others	14/40

 General elections for 5 states – Telangana, Chhattisgarh, Rajasthan, Madhya Pradesh, and Mizoram

- General elections for 5 states Telangana, Chhattisgarh, Rajasthan, Madhya Pradesh, and Mizoram
- BJP vs. Congress at the "national level" with various alliances at the "state level"

- General elections for 5 states Telangana, Chhattisgarh, Rajasthan, Madhya Pradesh, and Mizoram
- BJP vs. Congress at the "national level" with various alliances at the "state level"
 Legacy data on previously formed alliances can help simulate post-election possible alliances (monte-carlo simulations)

- General elections for 5 states Telangana, Chhattisgarh, Rajasthan, Madhya Pradesh, and Mizoram
- BJP vs. Congress at the "national level" with various alliances at the "state level"
 Legacy data on previously formed alliances can help simulate post-election possible alliances (monte-carlo simulations)
- Indian elections in comparison with U.S. elections have many unmodelable
 "influential parameters" (e.g., money, liquor, gifts, schemes, etc.)

- General elections for 5 states Telangana, Chhattisgarh, Rajasthan, Madhya Pradesh, and Mizoram
- BJP vs. Congress at the "national level" with various alliances at the "state level"
 Legacy data on previously formed alliances can help simulate post-election possible alliances (monte-carlo simulations)
- Indian elections in comparison with U.S. elections have many unmodelable
 "influential parameters" (e.g., money, liquor, gifts, schemes, etc.)
- Indian election prediction involves mining the opinions of people as well as collection of data from the official handles

- General elections for 5 states Telangana, Chhattisgarh, Rajasthan, Madhya Pradesh, and Mizoram
- BJP vs. Congress at the "national level" with various alliances at the "state level"
 Legacy data on previously formed alliances can help simulate post-election possible alliances (monte-carlo simulations)
- Indian elections in comparison with U.S. elections have many unmodelable
 "influential parameters" (e.g., money, liquor, gifts, schemes, etc.)
- Indian election prediction involves mining the opinions of people as well as collection of data from the official handles
- Various polling strategies (e.g., open debates, allegations) must also be analyzed

 Sampling bias problem – not all people registered to vote express self-opinions on social media; geo-tagging can mitigate, not eradicate!

- Sampling bias problem not all people registered to vote express self-opinions on social media; geo-tagging can mitigate, not eradicate!
- Diversity among modeling which of the existing state-of-the-art can best model social media data?

- Sampling bias problem not all people registered to vote express self-opinions on social media; geo-tagging can mitigate, not eradicate!
- Diversity among modeling which of the existing state-of-the-art can best model social media data?
- Temporal nature of the social media sustaining preference for a political party over a long period of time vs. the rising popularity of an event?

- Sampling bias problem not all people registered to vote express self-opinions on social media; geo-tagging can mitigate, not eradicate!
- Diversity among modeling which of the existing state-of-the-art can best model social media data?
- Temporal nature of the social media sustaining preference for a political party over a long period of time vs. the rising popularity of an event?
- Affective outcomes of party choices influence of the events caused by an electoral candidate or a political party

- Sampling bias problem not all people registered to vote express self-opinions on social media; geo-tagging can mitigate, not eradicate!
- Diversity among modeling which of the existing state-of-the-art can best model social media data?
- Temporal nature of the social media sustaining preference for a political party over a long period of time vs. the rising popularity of an event?
- Affective outcomes of party choices influence of the events caused by an electoral candidate or a political party
- Gender-based analytics if social media mimics the real-world scenario, then should gender-based analytics be incorporated into the prediction model?

Problem Statement and Research Objectives

Mining and modeling users' digital footprints on social media (Twitter) to accurately predict the outcomes of the general elections in a nation (India)

Research Objectives:

Design of an effective modeling framework that unifies various theories of social media modeling including volumetric, sentiment, network, and gender analyses to gauge at voters' behavioral patterns

Problem Statement and Research Objectives

Mining and modeling users' digital footprints on social media (Twitter) to accurately predict the outcomes of the general elections in a nation (India)

Research Objectives:

- Design of an effective modeling framework that unifies various theories of social media modeling including volumetric, sentiment, network, and gender analyses to gauge at voters' behavioral patterns
- Incorporating the temporal nature of social media footprints to assess the sustainability and popularity of a political party concerning day-to-day political changes over a long period

Problem Statement and Research Objectives

Mining and modeling users' digital footprints on social media (Twitter) to accurately predict the outcomes of the general elections in a nation (India)

Research Objectives:

- Design of an effective modeling framework that unifies various theories of social media modeling including volumetric, sentiment, network, and gender analyses to gauge at voters' behavioral patterns
- Incorporating the temporal nature of social media footprints to assess the sustainability and popularity of a political party concerning day-to-day political changes over a long period
- Mining the affective outcomes of the voters as the digital footprints of the events caused by an electoral candidate or political party

Twitter Mining: Parameters

- Followers count
- Friends count
- Listed count
- Retweet, Quote count
- ✤ Reply, Favorite count

Twitter Mining: Parameters

- Followers count
- Friends count
- Listed count
- Retweet, Quote count
- ✤ Reply, Favorite count
- Location geo-tagging
- Time of creation temporal ranking
- Hashtags, User mentions network
- Language, Tweet text sentiment

Twitter Mining: Parameters

- Followers count
- Friends count
- Listed count
- Retweet, Quote count
- Reply, Favorite count
- Location geo-tagging
- Time of creation temporal ranking
- Hashtags, User mentions network
- Language, Tweet text sentiment
- Gender* analysis

* Gender is not a Twitter parameter, it has to estimated separately

reachability

Challenges in Twitter Modeling

 Location – number of people posting their opinions vs. number of those people voting!

user_screen_name	user_gender	user_followers_count	user_friends_count	user_listed_count	user_location	tweet_created_at
urskumar9	female	1012	233	3	None	Fri Nov 09 04:26:11 +0000 2018
saiverameshwar		4	26	0	None	Fri Nov 09 04:26:30 +0000 2018
tiny_jerk		3	155	0	Milky_way	Fri Nov 09 04:26:48 +0000 2018
				\sim $_$		
	≅	65.07% twee	ets – unrela	ted geo-tag	gs	

Challenges in Twitter Modeling

*

* Location – number of people posting their opinions vs. number of those people voting!

user_screen_name	user_gender	user_followers_count	user_friends_count	user_listed_count	user_location	tweet_created_at	
urskumar9	female	1012	233	3	None	Fri Nov 09 04:26:11 +0000 2018	
saiverameshwar		4	26	0	None	Fri Nov 09 04:26:30 +0000 2018	
tiny_jerk		3	155	0	Milky_way	Fri Nov 09 04:26:48 +0000 2018	
	~	(5.070/ ++++++			-		
= 65.07% tweets – Unrelated geo-tags							

Volume - not many handles and the number of posts per handle is as low as 3 tweets/day!

Challenges in Twitter Modeling

 Location – number of people posting their opinions vs. number of those people voting!

Volume – not many handles and the number of posts per handle is as low as 3 tweets/day!
Language – discarding non-english tweets removes "48.2%" of the tweets (Hindi or Telugu)!

Day (Start: 11-23-2018)

Theories of Social Media Modeling: Volume

 Measures the volume of attention or support, and is computed as the frequency of mentions online (e.g., retweets, supporters, likes, etc.)

 $Vol_{p,t} = \frac{\{relevant \text{ social media mentions}\}_{p,t}}{\sum_{i} \{relevant \text{ social media mentions}\}_{i,t}} (\%)$

Theories of Social Media Modeling: Volume

 Measures the volume of attention or support, and is computed as the frequency of mentions online (e.g., retweets, supporters, likes, etc.)

 $Vol_{p,t} = \frac{\{relevant \text{ social media mentions}\}_{p,t}}{\sum_{i} \{relevant \text{ social media mentions}\}_{i,t}} (\%)$

 Digital footprints are preprocessed to ensure that the retained footprints specifically mention a single party or its most prominent candidate

Theories of Social Media Modeling: Volume

 Measures the volume of attention or support, and is computed as the frequency of mentions online (e.g., retweets, supporters, likes, etc.)

 $Vol_{p,t} = \frac{\{relevant \text{ social media mentions}\}_{p,t}}{\sum_{i} \{relevant \text{ social media mentions}\}_{i,t}} (\%)$

- Digital footprints are preprocessed to ensure that the retained footprints specifically mention a single party or its most prominent candidate
- Volumetric score is temporally weighted to assess the sustainability and popularity with time $Tem_{t,t,e} = \frac{k}{t-t}$

$$Vol_{p,T,t_{e}}^{(t)} = \frac{\sum_{t} \{relevant \text{ social media mentions}\}_{p,t} \cdot Tem_{t,t_{e}}}{\sum_{t} \sum_{i} \{relevant \text{ social media mentions}\}_{i,t}} (\%)$$

Theories of Social Media Modeling: Sentiment

Measures the positive, negative, and net sentiment impressions of each party on social media, based on simple counts of the number of tweets with the positive and negative sentiment

Theories of Social Media Modeling: Sentiment

- Measures the positive, negative, and net sentiment impressions of each party on social media, based on simple counts of the number of tweets with the positive and negative sentiment
- Sentiment score (Sen^(t, rch)_{p,T,t e}) is weighted temporally and by the reachability of the footprint to assess the sustainability and popularity with time
 - User reachability index = #followers + #friends + #listed
 - Tweet reachability index = #retweets + #favorites + #replies + #quotes

Theories of Social Media Modeling: Sentiment

- Measures the positive, negative, and net sentiment impressions of each party on social media, based on simple counts of the number of tweets with the positive and negative sentiment
- Sentiment score (Sen^(t, rch)_{p,T,t e}) is weighted temporally and by the reachability of the footprint to assess the sustainability and popularity with time
 - User reachability index = #followers + #friends + #listed
 - Tweet reachability index = #retweets + #favorites + #replies + #quotes
- We employ a hybrid of supervised and unsupervised approaches to effectively estimate the sentiment of the collected footprints
 - English tweets: SentiStrength
 - Non-English tweets: Deep Conv-LSTM architecture

Modeling the Sentiment: Challenges

- Complex linguistic structure
 - English + Native Language: దేశంపట్ల or ప్రజలపట్ల responsibility is not visible
 - Only Native Language: దేశంపట్ల కానీ ప్రజలపట్ల కానీ బాధ్యత కనిపించదు
 - Language written in English: desham patla kani prajala patla kani badhyata kanipinchadu

Modeling the Sentiment: Challenges

- Complex linguistic structure
 - English + Native Language: దేశంపట్ల or ప్రజలపట్ల responsibility is not visible
 - Only Native Language: దేశంపట్ల కానీ ప్రజలపట్ల కానీ బాధ్యత కనిపించదు
 - Language written in English: desham patla kani prajala patla kani badhyata kanipinchadu
- Corpus for sentiment classification
 - Telugu (5,410)^[1], Hindi (5,228)^[2], and code-mixed (Te-En*: 5,410 and Hi-En^[3]: 3,879)

Modeling the Sentiment: Challenges

Complex linguistic structure

3,879)

- English + Native Language: దేశంపట్ల or ప్రజలపట్ల responsibility is not visible
- Only Native Language: దేశంపట్ల కానీ ప్రజలపట్ల కానీ బాధ్యత కనిపించదు
- Language written in English: desham patla kani prajala patla kani badhyata kanipinchadu
- Corpus for sentiment classification
 - Telugu (5,410)^[1], Hindi (5,228)^[2], and code-mixed (Te-En*: 5,410 and Hi-En^[3]:

	Telugu		Hindi			
	Positive	Negative	Neutral	Positive	Negative	Neutral
Hand-annotated	250	250	250	250	250	250
Pure language	1,491	1,441	2,478	2,290	712	2,226
English code-mixed	1,491	1,441	$2,\!478$	1,352	570	1,957
Total	3,232	3,132	5,206	3,892	1,532	4,433

* Śata-Anuvādak partial translation of the obtained Telugu corpus was performed to achieve the Te-En code-mix corpus

 Measures the strength of the online community supporting each political party to assess the central position played by the party in the community

- Measures the strength of the online community supporting each political party to assess the central position played by the party in the community
- Model the social network graph for each political party
 - Central hub: Political party

- Measures the strength of the online community supporting each political party to assess the central position played by the party in the community
- Model the social network graph for each political party
 - Central hub: Political party
 - Member nodes: Party candidates

- Measures the strength of the online community * supporting each political party to assess the central position played by the party in the community
- Model the social network graph for each political party
 - * Central hub: Political party
 - * Member nodes: Party candidates
 - * Other nodes: @/#-mentions

u 1

- Measures the strength of the online communit supporting each political party to assess the central position played by the party in the community
- Model the social network graph for each political party
- Overall network score:

$$Net_{p,T}^{(dens, betw)} = \frac{C_B(p) + (1/D(p))}{\sum_{i} C_B(i) + (1/D(p))} (\%)$$

$$C_B(p) = \sum_{u \neq v \neq p \in V} \frac{\sigma(u, v \mid p)}{\sigma(u, v)}$$

- Estimates the social media users' gender to closely mimic the real-world scenario
- Estimate the

gender gaps and gender stereotyping

- Estimates the social media users' gender to closely mimic the real-world scenario
- Estimate the gender gaps and gender stereotyping
 Gender Training Set Name
 M: 14,000; F: 14,000*

Estimates the social media users' gender to closely mimic the real-world scenario

Estimates the social media users' gender to closely mimic the real-world scenario

* M: https://gist.github.com/mbejda/7f86ca901fe41bc14a63; F: https://gist.github.com/mbejda/9b93c7545c9dd93060bd

Estimates the social media users' gender to closely mimic the real-world scenario

* M: https://gist.github.com/mbejda/7f86ca901fe41bc14a63; F: https://gist.github.com/mbejda/9b93c7545c9dd93060bd

Influential Parameter Mining: Issues and Biases

- Gender and Related Reforms
- Age and Experience
- Religion and Region (geo-tagging)
- Educational backgrounds

Demographic data such as gender and age are not available from the API -- and not always appropriate as Twitter accounts can represent many things not limited to persons alive or dead.

share improve this answer

Influential Parameter Mining: Issues and Biases

- Gender and Related Reforms
- Age and Experience
- Religion and Region (geo-tagging)
- Educational backgrounds
- Alliance loyalty (legacy data)
- Impact of political decisions
 - Farm loan waiver, Minimum support price (agriculture), etc.
- Polling strategies and opposition speeches

Influential Parameter Mining: Issues and Biases

- Gender and Related Reforms
- Age and Experience
- Religion and Region (geo-tagging)
- Educational backgrounds
- Alliance loyalty (legacy data)
- Impact of political decisions
 - Farm loan waiver, Minimum support price (agriculture), etc.
- Polling strategies and opposition speeches
- Influence of money, liquor, gifts on elections!
- Financial backgrounds

Influential Parameter Mining: India

- Pulwama attack⁺
- Smart cities⁺
- SC/ST act⁺
- ♦ Ram mandir⁺
- Swachh Bharath⁺

Influential Parameter Mining: India

BJP

- Pulwama attack⁺
- Smart cities⁺
- $SC/ST act^+$
- ♦ Ram mandir⁺
- Swachh Bharath⁺
- ♦ GST⁻
- Demonetization⁻
- ♦ Black money⁻
- ♦ Ganga clean⁻

Influential Parameter Mining: India

BJP

- Pulwama attack⁺
- Smart cities⁺
- $SC/ST act^+$
- ♦ Ram mandir⁺
- Swachh Bharath⁺
- ♦ GST⁻
- Demonetization⁻
- ♦ Black money⁻
- ♦ Ganga clean⁻
- Save India⁺ Congress+

 Obtained gender analytics directly influences the volume of the footprints collected (temporally weighted)

- Obtained gender analytics directly influences the volume of the footprints collected (temporally weighted)
- Sentiment analysis incorporates temporal weighting and reachability of a tweet*
 - Influential analysis is sentiment analysis of events that affect the voters

- Obtained gender analytics directly influences the volume of the footprints collected (temporally weighted)
- Sentiment analysis incorporates temporal weighting and reachability of a tweet*
 Influential analysis is sentiment analysis of events that affect the voters
- UToSMoV score combines volumetric, sentiment, social network, gender, and influential analysis and is normalized per party

$$UToSMoV(p) = \begin{pmatrix} \beta_{1,m} \\ \beta_{1,f} \end{pmatrix} \cdot \begin{pmatrix} Vol_m \\ Vol_f \end{pmatrix}^T + \beta_{2,S} \cdot (Sen_{pos} - Sen_{neg}) + \beta_{2,I} \cdot (Inf_{pos} - Inf_{neg}) + \beta_3 \cdot (Net) + \beta_0$$

* UToSMoV performs a temporal backtracking guided by influence

- Obtained gender analytics directly influences the volume of the footprints collected (temporally weighted)
- Sentiment analysis incorporates temporal weighting and reachability of a tweet*
 Influential analysis is sentiment analysis of events that affect the voters
- UToSMoV score combines volumetric, sentiment, social network, gender, and influential analysis and is normalized per party

$$UToSMoV(p) = \begin{pmatrix} \beta_{1,m} \\ \beta_{1,f} \end{pmatrix} \cdot \begin{pmatrix} Vol_m \\ Vol_f \end{pmatrix}^T + \beta_{2,S} \cdot (Sen_{pos} - Sen_{neg}) + \beta_{2,I} \cdot (Inf_{pos} - Inf_{neg}) + \beta_3 \cdot (Net) + \beta_0$$

* UToSMoV performs a temporal backtracking guided by influence

- Obtained gender analytics directly influences the volume of the footprints collected (temporally weighted)
- Sentiment analysis incorporates temporal weighting and reachability of a tweet*
 Influential analysis is sentiment analysis of events that affect the voters
- UToSMoV score combines volumetric, sentiment, social network, gender, and influential analysis and is normalized per party

$$UToSMoV(p) = \begin{pmatrix} \beta_{1,m} \\ \beta_{1,f} \end{pmatrix} \cdot \begin{pmatrix} Vol_m \\ Vol_f \end{pmatrix}^T + \beta_{2,S} \cdot (Sen_{pos} - Sen_{neg}) + \beta_{2,I} \cdot (Inf_{pos} - Inf_{neg}) + \beta_3 \cdot (Net) + \beta_0$$

$$[1.0] \qquad [1.0] \qquad [0.8]$$

$$Constants^{[1]}: - \begin{cases} \beta_{2,S} \le \beta_3 \le \beta_{2,I} \cong (\beta_{1,m} + \beta_{1,f}), \text{ if } \beta_{1,m} \text{ and } \beta_{1,f} \text{ are known} \\ \beta_{2,S} \le \beta_3 \le \beta_{2,I} \text{ and } (\beta_{1,m} = \beta_{1,f} = 1), \text{ otherwise} \end{cases} * 0 \le \beta_{1,m}; \beta_{1,f}; \beta_{2,S}; \beta_{2,I}; \beta_3 \le 1$$

* UToSMoV performs a temporal backtracking guided by influence

State	Political Party	Tweets Collected	Number of Handles*	Collection Time (days)
	BJP	23,642	4] ~35
Telangana	Congress+	55,751 -	241,489 7	- 19 ~35
	TRS	162,096	8_	~35
Chhattiggarh	BJP	4,317	7.674 16	~25
Cilliattisgarii	Congress+	3,357 _	11_	~25
Dejecthen	BJP	101,040	28-	~30
Kajastilali	Congress+	67,188 _	108,228 27	<u>-</u> 55 ~30
Madhya	BJP	ך 118,197	179 212 24 -	~30
Pradesh	Congress+	60,116	170,010 15	<u>→ 39</u> ~30

State	Political Party	Tweets Numl Collected Har	oer of C adles* Tim	ollection me (days)
	BJP	23,642	4]	~35
Telangana	Congress+	55,751 - 241,489	7 – 19	~35
	TRS	162,096	8	~35
Chhattisgarh	BJP	4,317	16 ₀₇	~25
	Congress+	3,357	$11 \int 27$	~25
Rajasthan	BJP	101,040	28	~30
	Congress+	67,188	$27 \int 53$	~30
Madhya	BJP	118,197	24	~30
Pradesh	Congress+	60,116	$15 \int \frac{59}{39}$	~30

* Other generic handles were also used to collect the data and were then classified into a particular party based on the user mentions

State	Political Party	Tweets Nu Collected	umber of Handles*	Collection Time (days)
	BJP	23,642	4]	~35
Telangana	Congress+	55,751 - 241,4	89 7	- 19 ~35
	TRS	162,096	8_	~35
Chhattisgarh	BJP	4,317	ך 16	~25
	Congress+	3,357	11 _	~25
Rajasthan	BJP	101,040	ر 28	~30
	Congress+	67,188 5	28 27 _	- 55 ~30
Madhya	BJP	118,197	ر 24 ₁₉	~30
Pradesh	Congress+	60,116	13 15	- 39 ~30

* Other generic handles were also used to collect the data and were then classified into a particular party based on the user mentions

State	Political Party	Tweets Num Collected Ha	iber of Col ndles* Tim	llection e (days)
	BJP	23,642	4]	~35
Telangana	Congress+	55,751 - 241,489	7 – 19	~35
	TRS	162,096	8 _	~35
Chhattisgarh	BJP	4,317	16] ₉₇	~25
	Congress+	3,357 5 7,074	11 5 27	~25
Rajasthan	BJP	101,040	28	~30
	Congress+	67,188 5	$27 \int$	~30
Madhya	BJP	118,197	²⁴	~30
Pradesh	Congress+	60,116	$15 \int 39$	~30

* Other generic handles were also used to collect the data and were then classified into a particular party based on the user mentions
Twitter Corpus Statistics

State	Political Party	Tweets Numb Collected Hane	er of Co dles* Tin	Collection Time (days)	
	BJP	23,642	4]	~35	
Telangana	Congress+	55,751 - 241,489	7 - 19	~35	
	TRS	162,096	8_	~35	
Chhattisgarh	BJP	4,317	16	~25	
	Congress+	3,357	$11 \int 27$	~25	
Rajasthan	BJP	101,040	28	~30	
	Congress+	67,188 5 108,228	$27 \int 53$	~30	
Madhya	BJP	118,197	24	~30	
Pradesh	Congress+	60,116	$15 \int \frac{39}{5}$	~30	

* Other generic handles were also used to collect the data and were then classified into a particular party based on the user mentions

Twitter Corpus Statistics

State	Political Party	Tweets Collected	Number of Handles*	Collection Time (days)
	BJP	23,642	4]	~35
Telangana	Congress+	55,751 - 24	1,489 7	- 19 ~35
	TRS	162,096	8_	~35
Chhattianach	BJP	4,317 7 76	ر 16 ₇₄	~25
Cimattisgarii	Congress+	3,357 _ 7,0	11	~25
Paiasthan	BJP	101,040	ر 28	~30
Rajastilali	Congress+	67,188 _	^{5,226} 27]	~30
Madhya	BJP	118,197	ך <u>24</u>	~30
Pradesh	Congress+	60,116	15	- 39 ~30

Top mentioned leaders:

- ✤ @narendramodi
- ✤ @RahulGandhi
- ✤ @AmitShah
- @myogiadityanath
- @yadavakhilesh

Twitter Corpus Statistics

State	Political Party	Tweets Collected	Number of Handles*	Collection Time (days)
	BJP	23,642	4	~35
Telangana	Congress+	55,751 - 2	41,489 7	- 19 ~ 35
	TRS	162,096	8_	~35
Chhattianach	BJP	4,317 ₇	674 16	~25
Cimatusgam	Congress+	3,357 _ '	,074 11 _	~25
Rajasthan	BJP	101,040	28-	~30
	Congress+	67,188 _	27	~30
Madhya	BJP	118,197	24 ~	~30
Pradesh	Congress+	60,116	15_	~30

Top mentioned leaders:

- ✤ @narendramodi
- ✤ @RahulGandhi
- ✤ @AmitShah
- @myogiadityanath
- ✤ @yadavakhilesh
- Top conversations:

*

- ✤ Rural economy
- Religion and Caste
- Vote tampering
- ✤ Dynastic politics
- Corruption

UToSMoV: Data preprocessing

	# U Twi	Jser Itter ID	User Screen Name	User Gende	Use Foller Cou	er ow. int	User Friends Count	User Liste Cour	r User d Locatio nt n	Tweet Created At	Tweet Lang.
Repeated words (>4) Punctuations (>5)	4 105 866	2824183 982400	Vinay Bhaskar	male	6		79	2	Andhra Pradesh India	Fri Nov 09 04:27:26 +0000 2018	te
Retweets											
Word smoothing Internet slang*	Tweet Hashtags	Twee User Mentio	t Tw Retv ns Co	veet 7 weet Fa unt 0	Tweet avorite Count	Tw Qu Co	veet 7 lote 1 unt 0	Fweet Reply Count	Tweet Text	Tweet Senti.	Tweet Alliance
	#SaveTelangana #SaveDemocrac y	@PTelang @KTRTI @RaoKavi @trsharis @sushilrT	2 ana &S tha h OI	20	200	<u>,</u>	5	20	RT @PTelangana: KCR పార్టీ అరాచకాలు@ KTRTRS @RaoKavitha @trshar	negative	TRS

* Abbreviation library can be found at: <u>https://www.netlingo.com/acronyms.php</u>

UToSMoV on Telangana: Results and Analysis

UToSMoV on Telangana: Influential Parameters

@KTRTRS,

@asadowaisi,

@UttamTPCC,

@drlaxmanbjp

- Kaleshwaram
- ♦ AP reorganisation act
- Mission Kakatiya
- Mission Bhagiratha
- Hyderabad metro rail

TRS

Reservation bill act

- Indiramma Illu
- One-lakh obs
- 30 Days 30 Questions
 - Cows distribution]
- Renaming cities

Congress+

BJP

@ani_digital Raja Singh, a BJP legislator in Telangana, has claimed that the party will rename Hyderabad as Bhagyanagar if voted to power in the state

Read @ANI story I aninews.in/news/national/... ♡ 1,085 7:10 PM - Nov 8, 2018

Political Party

UToSMoV on Chhattisgarh: Results and Analysis

UToSMoV on Rajasthan: Results and Analysis

UToSMoV on Madhya Pradesh: Results and Analysis

Unification of Various Theories: Predictions

- ✤ Telangana: TRS
- Chhattisgarh: Congress
- Rajasthan: Congress
- Madhya Pradesh: Congress

Unification of Various Theories: Quantified Selfie

BJP Congress+

TRS

- ✤ Telangana: TRS
- Chhattisgarh: Congress
- Rajasthan: Congress
- Madhya Pradesh: Congress

State	Political Party	Times Now CNX Exit Poll	C-Voter Exit Poll	UToSMoV	Actual Result
Telangana	BJP	05.88%	04.20%	12.57%	00.84%
	Congress+	31.09%	37.82%	22.60%	17.64%
	TRS	55.46%	48.74%	64.84%	73.95%
Chhattisgarh	BJP	51.11%	41.60%	37.90%	24.44 %
	Congress+	38.89%	42.20%	62.10%	75.55%
Dejesther	BJP	42.7 1%	39.70%	47.00%	39.69%
Kajastilali	Congress+	52.76%	47.90%	53.00%	50.25%
Madhya Pradesh	BJP	54.78%	41.50%	48.67%	48.26%
	Congress+	38.70%	42.30%	51.33%	49.56%

Conclusions and Future Work

- Unified framework that models volumetric, sentiment, social network, gender, and influence outperforms the baseline predictions
- Temporal backtracking guided by influence accounts for a change in the user's opinion due to the political party's influence
- Fact checking and fake-news detection modules are to be incorporated to enable more accurate predictions
- An effective strategy for bot and sockpuppet identification must be developed
- Develop a parameter self-adaptive model to learn the unification parameters
- Post-election alliances to be found using legacy data via monte-carlo simulations
- Polling strategies such as opposition speeches are to be analyzed

References

- [1] Mukku, S.S., and Mamidi, R. "ACTSA: Annotated corpus for telugu sentiment analysis." Proceedings of the First Workshop on Building Linguistically Generalizable NLP Systems. 2017.
- [2] Akhtar, M.S., et al. "A hybrid deep learning architecture for sentiment analysis." Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers. 2016.
- [3] Ameya, P., et al. "Towards sub-word level compositions for sentiment analysis of hindi-english code mixed text." arXiv preprint arXiv:1611.00472 (2016).
- [4] Jaidka, K., et al. "Predicting elections from social media: a three-country, three-method comparative study." Asian Journal of Communication (2018): 1-21.
- [5] Cuzzocrea, A., et al. "Edge betweenness centrality: A novel algorithm for QoS-based topology control over wireless sensor networks." Journal of Network and Computer Applications (2012).