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Problem Setting: Supervised Learning
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Iris setosa, 0.05
-, h() —— Iris versicolor, 0.80
Iris virginica, 0.15

Given a bunch of training examples, with each
training example annotated:

%  Learn the patterns in known data

%  Generalize on unseen data

S

Hypothesis: transformation from input features to
output values

Classification vs. regression: countably discrete vs.
continuous outputs

Bias-variance tradeoff - bias = paying no attention to
training data; variance = paying too much attention
to training data

RA Fisher. The use of multiple measurements in taxonomic problems. Annual Eugenics, Part Il. pages 179-188, 1936
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Motivation: Accommodating Nonlinearity

« Do linear models: GLMs, v-SVMs handle data nonlinearity?

< Linear hypothesis: h(x) = ho(z) = oz + 0121 + - + Oz = 3 0,2
. .. . . j=0
% Linear decision boundary: logistic regression vs. neural
networks?

% Kernelization trick vs. decision trees: feature mapping

%  Explore the inherent structure in the data: moving from k-NN
to decision trees
% k-NN: clusters of homogeneous class alignments
< Fora given input, ), if we somehow knew that z(®
belongs to a cluster?
< Relevance: exact identity of z(vs. cluster knowledge

% Decision trees: determine (non-overlapping) areas of interest

Raphael John Lamarre Townshend. Decision trees. pages 2-3, 2019
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Learning problem: predict whether to ski or
not, given the location and time of year

X=U,_,R9, rez?




Choosing Regions: Top-Down, Recursive, Greedy

% How to split the input space into regions of interest? _ ——north pole
. , . : /
% Occam’s razor: non sunt multiplicanda entia praeter 90 " .
@)
necessitatem — max compact regions . o gp)
8 00
< NP-hard: max compact a exact cover by three sets g %09
()
% Decision trees: top-down, recursive, greedy partitions T |-_ —m e m s ——om— = -
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Learning problem: predict whether to ski or
not, given the location and time of year

% Unseen data: traverse from root to leaf; satisfying criteria on

set at the internal nodes of the tree — [O(log, m); O(m)]
X=U,_,R9, rez?

Anselm Blumer, et al. Occam’s razor. Information processing letters, 24(6):377-380, 1987




Choosing Regions: Top-Down, Recursive, Greedy

— —-north pole
Ve
d
90 o@ o
—
o)
§ 00
= ©) 1o
%0 °c 0%
= O X0 00 ©
.- O
o 0 oo g@ ©
g 00 ° S ° o
E ®) (@) ()
= @ © o) o)
3 e
= o) o) ° 5
000 (@) -
—-90

Tt 123 45 6 7 8 9101112

\\ Time of the year (month)

~
=~ south pole

Learning problem: predict whether to ski or
not, given the location and time of year

(a) Partition the input region X, with a threshold on the latitude, at 10°
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Choosing Regions: Top-Down, Recursive, Greedy
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not, given the location and time of year

(b) Partition the top child region of the input space R(X'2), with a threshold on time of the year, at 3.5




Choosing Regions: Top-Down, Recursive, Greedy
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Learning problem: predict whether to ski or
not, given the location and time of year

(c) Partition the bottom child region of the input space R(X'l), with a threshold on time of the year, at 8
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Choosing Regions: Top-Down, Recursive, Greedy
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Learning problem: predict whether to ski or
not, given the location and time of year
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Stopping criterion: purity of leaves (recall the motivation
from k-NN); no more attributes left to splitic@tegericall
% Can we get pure leaf nodes for any training data? —
what if we have: (9, +)and (2 = 2, -y

% Majority voting: if we can not grow a consistent tree

Why not stop if no split improves the impurity: greedy
algorithm; think of XOR gate!

How to split an attribute?: discrete vs. continuous attributes

0.

% Discrete: split falls out naturally (e.g., vampires)
< Continuous: discretize and find optimal threshold°ptim!

Loss: choice of splitting attribute (and threshold)

Q. What happens if we change the stopping condition to include full growth?
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Greediness Metric: Information Gain

«» Revisiting Occam’s razor: need to build smallest possible — —-north pole
//
decision tree, greedily 90 o C:?
% Maxdecrease in loss: choose split (s) and threshold () : I
o . . . . § 00 1
% Region-based loss: cardinality weighted g % oo |
avg. loss at child nodes "8 © :_ & ?
- A \ g === & =—0" = —opO— -~ —
(parent.1) (parent.2) =0 o) o 1
arg max J(R(parent)) _ |R - |J(R(parent.1)) + |R - |J(R(parent.2)) Fg OO &D 1 g e
st |\ [RParent)] |R(parent)| E P o I ® o
loss at parent node = ®© (@) 1 (@) @)
3 e
o . 0 P~ o o
< Information gain: amount of decrease in loss from parent 000 0
—-90 ! e
region to child nodes 't 12345678 9101112
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<  Objective: maximize the information gain Time of the year (month)
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% Eq.: minimize the average loss at child nodes
X=U,_,R9, rez?
% Deuvising loss function: pure = zero loss, uniform = max loss

Q. Isinformation gain the best metric of choice? What would happen if we split on social security number attribute?




Region-based Loss: Misclassification Error

% Misclassification error by majority vote: compute the
fraction of misclassified samples in a given region
»  Majority vote: assume the node label to majority class o yes

*
‘0

% Misclassification l0ss: Jiciass(RY) = 1 — maéc(pgﬁ)
ce i

R(Parent) . 9004 100—

fraction of samples with class ‘c’ in region " —— R(parent.l) - 700+ 100— R(parent.2) - 2004 0—
1 : 3 1 . )

% Sensitivity to class probabilities?: maintaining the
misclassification proportion; changing class probabilities
% Simple loss, meets greedy expectations R(PATent) 900+ 100
% Misclassification loss is quite insensitive to changes ]

in class probabilities no @ yes

Information gain: whenever the majority vote of the child R 5001 100 RPER2) 40010
regions is the same, zero information gain!

7
L X4

Binary classification misclassification error: J... s (8?) = 1 — max(p?, 1 — p\?)




Region-based Loss: Cross-Entropy Loss

Cross-entropy loss Misclassification loss
1 Jont (R(p. 1) Jent (parent, R(P)) 1
: information
Jent (children¥ gam

05 Jent (R(p.2)) vs. 05 JImisclass (R(phl) Jmisclass (parent, R(p))

Jmisefass (children) * infg;irlnlation
pgf) Jmisclass (R(p'2)) pgﬁ)

0.5 1 0.5 1
% Cross-entropy (randomness; disorder): measure the level

of impurity in a given region — “strictly concave”
% Information theory: #bits needed to communicate the
class label, given the distribution of proportions

%  Cross-entropy l0ss: Je.(R7) = — 3~ p log, pl)

ceC /T proportion of samples =0?
fraction of samples with class ‘c’ in region ¢’ = — — — —

If the base of the logarithm is set to ‘2, we have bits/shannons, and if it set to ‘e, we have nats

Cross-entropy loss

1
1 Jent (R(p Jent (parent, r(P) )
information
Jent (children) * 22
05 Jont (R(p.2))
B
0.5 1
VS.
Misclassification loss
1
05 Jrnisclass (R(p'l)

\\Jmisclass (paren‘c, R(p) )

Jiisclass (children)

Jmisclass(R(p'z) )*\ pig)

0.5 1




Region-based Loss: Gini Impurity

Cross-entropy loss Misclassification loss Gini impurity
1 Jent (R(P- D Jent (parent, R(P)) 1 1
: information
Jent (children¥ a1

| . (r(p-1) N -

0.5 Jent (RP2)) 0.5 Jmisclass (R ) Jmisclass (parent, R(P)) 0.5 | Jgini R . (parent, R®)
& information
: § g ini i gain
Jumisefcs (children) % N gain- Jrimi (children)
| / . . (r(p-2) .
pg‘z) JmiSClaSS(R(p'2)) pgz) ngm(R ) pg)
0.5 1 v ; _ 1

% Gini impurity (misclassification probability): choosing a+sample, marking it as —; choosing a -
sample and marking it as +

’:’ Gini impurity: Jgini(R(j)) = Zpgj) (1 - pgj);—— fraction of samples with class ‘c’ in region j’

ceC
% Nature: Gini impurity is also strictly concave, hence, sensitive to class probabilities
<3

Gini impurity vs. cross-entropy: logarithm approximation (Taylor series + Remez algorithm)
is computationally expensive!

Binary classification gini impurity: Jyyuy.gm ®9) = 2p7 (1 . p(j))
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Decision Trees for Regression

7
%®

Decision trees for regression: determine (non-overlapping)

areas of interest

% Regression: most tree growth processes remain the
same as that employed in classification

% Predictions: rather than majority vote, employ

average label, i.e., y¥) = >y
i€r()

|R(J)|

Squared loss function: choose the best attribute, threshold
by measuring maximum information gain on squared loss

(v -s2)

%(_/
deviation from the average label

J, squared _7) |
i€R(@)

Classification And Regression Trees (CART): binary trees

Leo Breiman, et al. Classification and regression trees. International Group, 432:151-166, 1984

L north pole
‘ 1
Wi e oo ig® o, © o
® I
= RUPE,e I r®
) { X J | @
& - | o g0 I
g |e _'_,_J' 3?4)° Lo
g ' [ oo ®
Sol et T %
e # () ®
B @ e s ' ® °
= o ° I 1 ®
kE ° R@ L
® | ® .
e%e 1®
.
—90 1 1 |
T 1 2 3 4 5 6 7 8 9 10 11 12
\\ Time of the year (month)

=~ south pole

Learning problem: predict the amount of
snowfall, given the location and time of year

X=U,_,R9, rez?




Revisiting Categorical Attributes

% Natural threshold: Categorical

sl ssn-2 ssm-3 ssnod ssn-(i) J—_ attributes, threshold falls out
SSN naturally (recall vampires)
i3 4 g ¥ %  Thought experiment: what
+ + — + e - | " - would happen if split on

highly-branched attributes?

Need for 29 questions: for a categorical attribute with ‘g’ choices, we need 29 yes-no questions to
be answered!

K/
L X4

7
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Model overfitting: the use of highly-branching categorical variables to split the input region, often
results in high-degree of overfitting

% Possible solution: convert highly-branching attributes to numerical attributes: pgg)w =1,2,...,m

Another possible solution (used in C4.5 algorithm) is to use gain ratio: considers intrinsic information; includes branching details (see §5.3 in lecture notes)




Regularization of Decision Trees

% Decision trees: low bias, high variance models — think of the _ ——north pole
case of full tree growth! 9'(() ' o .
% Threshold on the leaf size: stop splitting when the 7 | Rx2D ‘o o Rx22)
#samples has reached a minimum threshold & ' %00
s Threshold on the number of nodes in the tree: stop E oo f%?% - = om = mono— = = -
splitting if #leaves has reached a maximum threshold % ZSO . ! § o o
% Enforce a minimum depth of the tree: decide to split i< @ jEL1 I plx12P
based on the #splits taken to reach the node - OOOO Ef) e o
©)
% Misleading heuristic: threshold on the obtained information 910 I 2845678 9101112

\

gain (gain ratio) after splits — XOR function! \ Time of the year (month)

=~ south pole

K/
%*

Information-gain based regularization: Build the entire tree Learning problem: predict whether to ski or
. .. . . . not, given the location and time of year
while training, prune away while validating

X=U,_,R9, rez?

Information gain and gain ratio are often used together, since gain ratio alone could overcompensate
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Specific Use Cases of Decision Trees

Bot. gray?

yes

1
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Kinect applications: elementary image classification and
posture detection

Autopilot: decision trees had been employed to autopilot
an aircraft on a plane simulator by merely learning from
the logs of human experts flying the simulator

Credit fraud detection: credit card companies employ
decision trees to determine whether or not a loan can be
granted to a customer

Medical applications: intuitive to understand and
explain, they often mimic the way a doctor thinks, when
trained on a medical dataset (caesarean section risk)

Cynthia J Sims, et al. Predicting cesarean delivery with decision tree models. 2000
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Concluding Remarks

1
% Decision trees: nonlinear decision boundaries; top-down, - o
recursive, greedy growth oo o
% Ease of interpretability and explainability: a set of if-else S | Bmaa &
rules class, by playing twenty question with data 03| 0 o T T T 00
% Speed of training and testing: small time complexity to of S
train and test decision trees e
% Support for categorical attributes: quite easy!
1 . '
% Why should you not use decision trees: basic decision trees - o
model often performs poorly  lre = &
% High model variance: too much attention to train samples & 2032
% Lack of additive structure: linearly separable data 03| o o 77 2 _________
% Why learn them?: ideal framework for ensemble learners! ’ T '0_75 4

Boosting and bagging approaches: random forests, extra trees, adaboost, gradient boosting have shown promising results on several applications
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