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❖ Feature selection aims at facilitating how a subset of 

available dimensions can be selected
❖ Sparsity (noise) and high-dimensionality
❖ Sparse matrices often mislead the underlying 

machine learners

❖ Feature extraction and engineering vs. feature 
selection vs. feature extraction

❖ Feature selection variants: filter, wrapper, 
embedded, and hybrid approaches

❖ Bias-variance tradeoff – bias = assumptions made by 
classifier; variance = training data variations

RK Varshney. Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nature. 2017
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Bias-Variance Tradeoff
❖ Bias: Occurs when the classifier has limited 

flexibility to learn the ground truth – number 
of samples
❖ Low bias: more samples

❖ Variance: Sensitivity of the classifier to the 
sets of training data – number of features
❖ Low variance: less features

❖ Total error[Hastie 2009]: Bias2 + variance + 
irreducible error

❖ Ideal: features-to-samples ratio ⋘ 1 
Observed: features-to-samples ratio ≧ 1

[Hastie 2009] T Hastie et al. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. 2009.
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Feature Space and Information Extraction
❖ Does more information lead  

to more informed decision 
making?
❖ Irrelevancy: learnability?
❖ Redundancy: training ?
❖ Noise: classification errors
❖ Computational cost: expensive
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Feature Space and Information Extraction
❖ Does more information lead  

to more informed decision 
making?
❖ Irrelevancy: learnability?
❖ Redundancy: training ?
❖ Noise: classification errors
❖ Computational cost: expensive

T Gangavarapu et al. Coherence-based Modeling of Clinical Concepts Inferred from Heterogeneous Clinical Notes for ICU Patient Risk Stratification. CoNLL. 2019.

❖ How to choose a feature selection approach for the given data? – need to match with the problem 
structure and mine for inherent patterns in the data
❖ Intuition-based: unreliable approach
❖ Exhaustive search: infeasible
❖ Determine heuristically: issue of convergence   
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Research Gaps in Feature Selection?
❖ Which feature selection to use: multiple filter, wrapper, embedded, hybrid, and heuristic 

approaches; which one accurately matches the problem structure? – always an issue!

❖ Filter-based approaches: faster computation, but heavy dependence on correlation and classifier 
independence limits their accuracy 

❖ Wrapper-based, embedded, and hybrid approaches: domain adaptability and high computational 
cost of training, but reliable performance

❖ Metaheuristic search approaches: population-based mechanism guides the search, but 
convergence problem and correlation-unguided search can be a bottleneck!

❖ Need for an ensemble: use a set of predetermined feature selection approaches
❖ Voting-based ensemble: simply a brute force ensemble 
❖ Greedy ensemble: penalize bad-performing selection methods and their features

❖ Time and accuracy tradeoff: use a hybrid of filter and wrapper approaches
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Greedy Filter–Wrapper Hybrid Ensemble

Feature selection using the chosen methods
Feature space: #features(dataset)

Evaluation of selected features and deriving 
the hybrid feature subspace
Feature space: #features(S 1)

Evaluation of the hybrid feature subspace
Feature space: hybrid

Genetic algorithm, greedy 
parameter-wise optimization

Penalty parameters
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Greedy Hybrid Ensemble: Scoring Scheme

General trends in parameter optimization: lower value of ψ, higher value of τ, and fine tuning of θ 

featScore =
    |FS| – ρf + 1

f ∈ ranked FS

f ∈ unranked FS   1/ |FS|

f ∉ FS   –1/ |FS|

accScore =
    |M| – ρm + 1

|M||FS|

index(m) + 1

overallScore = featScore(f) × accScore(m)𝚺
m

M
Threshold-based feature selection

❖ Scoring of features (featScore) and selection techniques (accScore)

❖ Penalty parameters for greedy ensembling of base feature subspaces
❖ Accuracy penalty (ψ): reduces the impact of accuracy scores = accScore/ψ
❖ Feature penalty (τ): increases the negative impact of the feature scores = featScore × τ

❖ Overall feature scoring and hybrid feature selection (θ)

❖ Optimization of penalty parameters (ψ, τ, and θ): genetic algorithm, greedy optimization, … 
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Optimization of Penalty Parameters

The effect of ψ, τ, and θ on Skin Cancer dataset 
(greedy parameter-wise optimization)

71.354% (ψ: 1, τ: 6, and θ: 0.2) Superior performance of the 
proposed approach

87.5%

79.0%

51.8%

The effect of ψ, τ, and θ on Skin Cancer dataset 
(genetic algorithm (N = 50, pc = 0.6, pm = 0.1))
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Conclusions and Future Directions
❖ Proposed a penalty based greedy filter–wrapper hybrid ensemble approach to facilitate optimal 

feature selection

❖ Ensemble greedily selects the features from the subspaces obtained from the predetermined base 
selection methods

❖ Specific performance dependent penalty parameters were used to penalize the base feature 
subspaces essential to achieve the optimal ensembling of those subspaces

❖ At any point in time, only a stratified sample and not the entire dataset is not used for computation; 
the computational complexity is significantly reduced

❖ We leverage effective heuristic search strategies including the greedy parameter-wise optimization 
and the GA to obtain optimal values of the penalty parameters

❖ The proposed method introduces additional (penalty) parameters which require prior training to 
obtain the optimal setting in advance
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